cl3-04. Matriz asociada a un transformación


Teorema. Sean VV y WW dos espacios vectoriales de dimensión nn y mm, respectivamente. Sean B1{B}_{1} y B2{B}_{2} sus respectivas bases. Sea T: VWT{:}\ V\rightarrow W una transformación lineal; entonces existe una única matriz AT{A}_{T} de m×nm\times n tal que: 

[T(v)]B2=AT.[v]B1{{[T(v)]}_{B2}}={{A}_{T}}.{{[v]}_{B1}}

La matriz AT{A}_{T} se denomina matriz de transformación correspondiente a T o representación matricial de T, con respecto a las bases B1{B}_{1} y B2{B}_{2}. Se suele representar también como ATB1B2{{A}_{{{T}_{B1B2}}}} para indicar que tal matriz utiliza trabaja exclusivamente con coordenadas respecto a las bases B1{B}_{1} y B2{B}_{2} en los espacios de partida y de llegada.

Construcción de una matriz de transformación. Sean B1{B}_{1} y B2{B}_{2} dos bases respectivas de los espacios VV y WW, tales que B1={v1,v2,vn}{{B}_{1}}=\left\{ {{v}_{1}},{{v}_{2}},\cdots {{v}_{n}} \right\} y B2={w1,w2,wn}{{B}_{2}}=\left\{ {{w}_{1}},{{w}_{2}},\cdots {{w}_{n}} \right\}. 

Si T: VWT{:}\ V\rightarrow W es una transformación lineal, entonces el procedimiento para calcular la matriz ATB1B2{{A}_{{{T}_{B1B2}}}} es el siguiente:

1.- Calcular T(vi)T({v}_{i}), para i=1,2,...ni=1,2,...n 
2.- Determinar el vector de coordenadas de T(vi)T({v}_{i}) respecto a la base B2, [T(vi)]B2{{[T({v}_{i})]}_{B2}}.
3.- Construir la matriz ATB1B2{{A}_{{{T}_{B1B2}}}} eligiendo a [T(vi)]B2{{[T({v}_{i})]}_{B2}} como la i{i}-ésima columna de AT{A}_{T}.


ATB1B2=[[T(v1)]B2[T(v2)]B2[T(vn)]B2]{{A}_{{{T}_{B1B2}}}} = \left[ \begin{array}{rrrr} \uparrow  & \uparrow  & {} & \uparrow \\ {{[T({{v}_{1}})]}_{B2}} & {{[T({{v}_{2}})]}_{B2}} & \cdots  & {{[T({{v}_{n}})]}_{B2}} \\ \downarrow  & \downarrow  & {} & \downarrow \end{array} \right]

Utilización de la matriz de transformación. 
Si [v]B1{{[v]}_{B1}} son las coordenadas de vVv \in V, entonces se puede calcular [T(v)]B2{{[T(v)]}_{B2}} mediante la expresión:

[T(v)]B2=AT.[v]B1{{[T(v)]}_{B2}}={{A}_{T}}.{{[v]}_{B1}}, vV\forall v\in V.

Ejemplo 
Sea B={ex,ex,xex,x2ex}B=\left\{ {{e}^{x}},{{e}^{-x}},x{{e}^{x}},{{x}^{2}}{{e}^{x}} \right\} una base de V=gen(B)V=gen(B), T:VVT:V\to V una transformación lineal tal que T(f)=f(x)T(f)=f'(x), determine ATB{{A}_{{{T}_{B}}}}.

Solución

1.- Transformar cada vector de la base del espacio de partida, B:

T(ex)=exT({{e}^{x}})={{e}^{x}}
T(ex)=exT({{e}^{-x}})=-{{e}^{-x}}
T(xex)=ex+xexT(x{{e}^{x}})={{e}^{x}}+x{{e}^{x}}
T(x2ex)=2xex+x2exT({{x}^{2}}{{e}^{x}})=2x{{e}^{x}}+{{x}^{2}}{{e}^{x}}

2.- Determinar las coordenadas de tales transformadas, respecto a la base del espacio de llegada, en este caso la misma base B para el mismo espacio V:

[T(ex)]B=[ex]B=(1,0,0,0){{\left[ T({{e}^{x}}) \right]}_{B}}={{\left[ {{e}^{x}} \right]}_{B}}=(1,0,0,0)
[T(ex)]B=[ex]B=(0,1,0,0){{\left[ T({{e}^{-x}}) \right]}_{B}}={{\left[ -{{e}^{-x}} \right]}_{B}}=(0,-1,0,0)
[T(xex)]B=[ex+xex]B=(1,0,1,0){{\left[ T(x{{e}^{x}}) \right]}_{B}}={{\left[ {{e}^{x}}+x{{e}^{x}} \right]}_{B}}=(1,0,1,0)
[T(x2ex)]B=[2xex+x2ex]B=(0,0,2,1){{\left[ T({{x}^{2}}{{e}^{x}}) \right]}_{B}}={{\left[ 2x{{e}^{x}}+{{x}^{2}}{{e}^{x}} \right]}_{B}}=(0,0,2,1)

3.- Construir la matriz con las coordenadas halladas:

ATB=[1010010000120001]{{A}_{{{T}_{B}}}}=\left[ \begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right].

Ejemplo 
Utilice la matriz del ejemplo anterior para calcular T(Cosh(x))T({Cosh}(x))

Solución

Aunque se puede calcular mediante la regla de correspondencia que T(Cosh(x))=Senh(x)T({Cosh}(x))=Senh(x), se requiere en el ejercicio utilizar la matriz de transformación. La matriz de transformación opera entre coordenadas, así se necesita hallar [Cosh(x)]B{{\left[ {Cosh}(x) \right]}_{B}}:

Dado que Cosh(x)=ex+ex2{Cosh}(x)=\frac{{{e}^{x}}+{{e}^{-x}}}{2}, entonces vector de coordenadas es [Cosh(x)]B=(1/2,1/2,0,0){{\left[ {Cosh}(x) \right]}_{B}}=(1/2,1/2,0,0)

Luego, se tiene que [T(v)]B=ATB[v]B{{[T(v)]}_{B}}={{A}_{{{T}_{B}}}}{{[v]}_{B}}, es decir:

[T(Cosh(x))]B=[1010010000120001](1/21/200)=(1/21/200){{[T({Cosh}(x))]}_{B}}=\left[ \begin{array}{rrr} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right]\left( \begin{array}{r} 1/2 \\ 1/2 \\ 0 \\ 0 \end{array} \right)=\left( \begin{array}{r} 1/2 \\ -1/2 \\ 0 \\ 0 \end{array} \right)

Lo que significa que:
T(Cosh(x))=12ex12ex+0xex+0x2exT({Cosh}(x))=\frac{1}{2}{{e}^{x}}-\frac{1}{2}{{e}^{-x}}+0x{{e}^{x}}+0{{x}^{2}}{{e}^{x}}
Es decir:
T(Cosh(x))=exex2=Senh(x)T({Cosh}(x))=\frac{{{e}^{x}}-{{e}^{-x}}}{2}=Senh(x)

Publicado por

Isaac Mancero Mosquera

imancero@espol.edu.ec | Docente FCNM – ESPOL