2. ChirpStack – Gestor de Gateways

Para integrar esta red a  IOT en esquema abierto se ha seleccionado como gestor de gateways a ChirpStack, pues se integra a la gestión de paquetes  y al gestor de mensajes MQTT versión Mosquitto.

De esta forma se genera un punto intermedio para integrar las conexiones con otros brokers de forma simplificada.

Dado que el servidor MQTT es parte del IOT Esquema Abierto, las instrucciones de instalación y configuración ya se encuentran descritas en:

MQTT – Mosquitto instalar

y no se incluirán en esta sección.

Referencia: https://www.chirpstack.io/project/architecture/

 

1.2 LoRaWan – Gateway, gestión con Packet forwarder

Para el módulo HT-M01, el fabricante Heltec publicó una aplicación para gestionar los paquetes denominado packet-forwarder, encargada de reenviar los paquetes a un administrador de gateways.

Los datos recibidos por el módulo gateway son reenviados por SPI o el puerto USB hacia la red local o internet usando el aplicativo instalado en un Raspberry Pi.

En las pruebas con USB se encontró que para reiniciar el módulo HT-M01 es necesario presionar el boton Reset, mientras que en el modo SPI se podía realizar de forma remota, por lo que se prefiere configurar el modo SPI.

Activar interface SPI

En Raspberry OS la interface SPI requiere activarse para su uso con la siguiente instrucción:

sudo raspi-config

Que permite seleccionar de una ventana las opciones de interface

para luego activar SPI

Conexión mediante SPI

Las instrucciones paso a paso se describen más adelante, para la ultima instrucción hay que tener disponible la configuración de región. Para el caso de Ecuador es US915.

Cada instrucción se debe realizar en secuencia, el el penúltimo paso se obtiene el Gateway _id, que será usado para registrar el mini gateway en el servidor de red  y aplicaciones.

Nota: En Raspbian OS se recomienda usar un nombre de usuario diferente de «pi«, por lo que se deben ajustar las direcciones en las instrucciones al usuario en las ultimas instrucciones.  En el directorio «lorasdk» Edite el archivo «install.sh» y «lrgateway.service» para evitar errores de donde se encuentra el archivo.

mkdir lora
cd lora
sudo apt-get update
sudo apt-get install git
git clone https://github.com/Lora-net/lora_gateway.git
# LoRa Gateway drivers
git clone https://github.com/Lora-net/packet_forwarder.git
# packet forwarding software
git clone https://github.com/HelTecAutomation/lorasdk.git
# This package will create a "lrgateway" service in Raspberry Pi
cd /home/pi/lora/lora_gateway
make clean all
cd /home/pi/lora/packet_forwarder
make clean all
cd /home/pi/lora/lorasdk
chmod +x install.sh 
./install.sh
#Run the script. After the script is run, it will create a 
# service named "lrgateway". The purpose is to make the lora driver 
# and data forwarding program run automatically at startup.
sudo cp -f /home/pi/lora/lorasdk/global_conf_US915.json /home/pi/lora/packet_forwarder/lora_pkt_fwd/global_conf.json
#the "global_conf_US915.json" may need change to your need.


Conexión al puerto USB

Las instrucciones son muy semejantes al proceso anterior, para la ultima instrucción hay que tener disponible la configuración de región. Para el caso de Ecuador es US915.

Cada instrucción se debe realizar en secuencia, el el penúltimo paso se obtiene el Gateway _id, que será usado para registrar el mini gateway en el servidor de red  y aplicaciones

Si el módulo fue instalado en el proceso anterior, no es necesario ejecutar esta sección

mkdir lora
cd lora
sudo apt-get update
sudo apt-get install git
git clone https://github.com/Lora-net/picoGW_hal.git
git clone https://github.com/Lora-net/picoGW_packet_forwarder.git
git clone https://github.com/HelTecAutomation/picolorasdk.git
cd /home/pi/lora/picoGW_hal
make clean all
cd /home/pi/lora/picoGW_packet_forwarder
make clean all
cd /home/pi/lora/picolorasdk
chmod +x install.sh
./install.sh
#Run this script will create a service named "lrgateway". The purpose is to make the lora driver and data forwarding program run automatically at startup.
sudo cp -f /home/pi/lora/picolorasdk/global_conf_US915.json /home/pi/lora/picoGW_packet_forwarder/lora_pkt_fwd/global_conf.json
#Put the configuration file on the specified path

Estado de Packet-forwarder

Las instrucciones de instalación se encuentran en:

HT-M01 Mini LoRa Gateway Quick Start. Heltec.org. Revisado Septiembre 2023

https://docs.heltec.org/en/gateway/ht-m01/quick_start.html#summary

Estado de la aplicación se obtiene con la instrucción:

sudo systemctl status lrgateway

obteniendo un mensaje semejante a:

pi@GirniLrGw1:~ $ sudo systemctl status lrgateway
● lrgateway.service - packet forwarder
   Loaded: loaded (/etc/systemd/system/lrgateway.service; enabled; vendor preset: enabled)
   Active: active (running) since Tue 2021-06-29 08:05:25 -05; 15min ago
  Process: 7763 ExecStartPre=/home/pi/lora/packet_forwarder/reset_pkt_fwd.sh start /home/pi/lora/pa
 Main PID: 7797 (lora_pkt_fwd)
    Tasks: 5 (limit: 2062)
   CGroup: /system.slice/lrgateway.service
           └─7797 /home/pi/lora/packet_forwarder/lora_pkt_fwd/lora_pkt_fwd

En caso de requerir reiniciar se cambia «status» por «restart».

sudo systemctl restart lrgateway

Archivos de Configuración de Packet_forwarder

Se crean dos archivos: «global» y «local» que son complementarios en el siguiente directorio:

cd
cd lora/packet_forwarder/lora_pkt_fwd 
ls

obteniendo el siguiente resultado

cfg  global_conf.json  inc  local_conf.json 
lora_pkt_fwd  Makefile  obj  readme.md  src 
update_gwid.sh

El archivo local contiene la identificación del gateway obtenida luego de ejecutar la línea ./install.sh del proceso anterior. El archivo global contiene la información de la región y las frecuencias usadas.

se editan los archivos con

sudo nano global_conf.json

sudo nano local_conf.json

Conexión a ChirpStack-gateway-bridge

El archivo «global_conf.json» se configura el servidor donde se encuentra el gateway-bridge usando el parámetro «server_address». Si se encuentra en el mismo Raspberry Pi que el Packet-forwarder se usa «localhost», sino con la dirección IP respectiva. También hay que actualizar los parámetros para el «gateway_ID» obtenido al final del proceso al instalar el packet-forwarder.

    "gateway_conf": {
        "gateway_ID": "3532363324003700",
        /* change with default server address/ports, or overwrite in local_conf.json */
        "server_address": "192.168.10.50",
        "serv_port_up": 1700,
        "serv_port_down": 1700,
        /* adjust the following parameters for your network */
        "keepalive_interval": 10,
        "stat_interval": 30,
        "push_timeout_ms": 100,
        /* forward only valid packets */
        "forward_crc_valid": true,
        "forward_crc_error": false,
        "forward_crc_disabled": false
    }

Conexión a TTN

El archivo «global_conf.json» se configura para un servidor TTN de la regíon, revisar los datos apropiador para «gateway_ID» y «server_address».

    "gateway_conf": {
        "gateway_ID": "3532363324003700",
        /* change with default server address/ports, or overwrite in local_conf.json */
        "server_address": "router.us.thethings.network",
        "serv_port_up": 1700,
        "serv_port_down": 1700,
        /* adjust the following parameters for your network */
        "keepalive_interval": 10,
        "stat_interval": 30,
        "push_timeout_ms": 100,
        /* forward only valid packets */
        "forward_crc_valid": true,
        "forward_crc_error": false,
        "forward_crc_disabled": false
    }

Referencia: https://www.chirpstack.io/gateway-bridge/install/debian/

1.1 LoRaWan – Gateway con módulo HELTEC HT-M01

El módulo HT-M01 tiene la opción de conectarse al Raspberry mediante SPI en la parte posterior.

Para facilitar la conexión, el fabricante ofrece una placa para montar en un Raspberry Zero.

https://heltec.org/product/m01-converter/

En caso de no disponer de la placa, es posible realizar la conexión siguiendo el diseño de Robo Zero One.

https://robotzero.one/heltec-lora-gateway-things-network/

Durante la implementación realizada, no se disponía del adaptador por lo que se probó construir un adaptador usando una placa perforada, teniendo los mismos resultados que con la placa de HELTEC.

El Kit de conexión del fabricante como referencia se muestra a continuacion:

1. LoRaWan – Gateway esquema abierto

El esquema abierto para un gateway LoRa de bajo costo, desagrega e interconecta componentes de hardware y software.

El mini-gateway es modular, el componente de software para la gestión de gateways y paquete de datos se implementa sobre un Raspberry Pi, conectado por Ethernet a la red local y con dirección IP fija.

En el manejo de software se prioriza integrar la gestión de dispositivos usando mensajes MQTT y de esta manera simplificar la integración al broker del esquema IoT general.


Componentes

El punto de partida la propuesta  es gateway entre LoRa y Ethernet/Wifi. El fabricante Heltec presenta un «mini-Gateway» con el Módulo HT-M01. El módulo de hardware se conecta por medio del software «Packet-forwarder» (en un Raspbery Pi) hacia un administrador de gateways que puede estar en la red local (ChirpStack) o en la nube (The Things Network).

Componentes de Hardware

  • Heltec HT-M01 mini gateway conectado mediante SPI o cable USB. https://heltec.org/project/ht-m01/
  • Raspberry Pi. (pruebas con modelo 2 y 3 B+)
  • memoria SD de 8GB para almacenamiento

La conexión del módulo HT-M01 se puede realizar con SPI usando una placa de conexión hacia el Raspberry Pi. Si no se tiene la placa, también se la puede construir siguiendo las instrucciones en:

https://robotzero.one/heltec-lora-gateway-things-network/

En la documentación se recomienda verificar que el cable USB sea de buena calidad, pues también lleva la alimentación de energía del módulo.

Componentes de Software

  • Raspberry Pi OS de 32 bits
  • Balena Etcher para transferir la imagen el OS a la SD
  • Heltec Packet-forwarder
  • MQTT – Mosquitto
  • ChirpStack: Gateway-bridge, Network – Server, Application-Server.

El proceso de instalación del Raspberry Pi se encuentra descrito en la Raspberry Pi OS-Instalar.

Packet-forwarder se instala siguiendo las instrucciones del fabricante.

Inicialmente se usó USB como conexión del módulo Heltec HT-M01, luego se usó SPI solo para comprobar las modalidades de implementación. Se utiliza SPI en la versión de operación regular.

Conexión entre componentes

  • módulo Heltec HT-M01 y Raspberry, SPI o USB
  • Ethernet desde la Raspberry Pi , usando dirección fija

La conexión Ethernet facilita la comunicación con el esquema existente y en operación, facilitando la ubicación de los componentes de software en otros «servidores» en los Raspberry Pi.

Referencia: Heltec automation https://heltec-automation-docs.readthedocs.io/en/latest/gateway/ht-m01/qucik_start.html

3.5 LoRa multipunto – Temperatura, Humedad: MQTT-HA

Esta es la última sección a realizar, pues se supone que tiene listo el dispositivo, construido y operativas las partes: Dispositivo, Gateway y Broker.

la visualización de los valores requiere declarar los dispositivos en Home Assistant en el archivo configuration.yaml

1. Incorporar el dispositivo en Home Assistant

Se requiere modificar el archivo configuration.yaml en el raspberry.

Se puede realizar en forma local desde el raspberry que tiene monitor, teclado y mouse conectado, y editar el archivo que se encuentra en el directorio:

 /home/homeassistant/.homeassistant/configuration.yaml

las líneas a añadir en la sección sensor:

sensor: 
  - platform: mqtt
    name: 'inv_D1_temperatura'
    unit_of_measurement: '°C'
    state_topic: 'invernadero/loraD1/temperatura'

  - platform: mqtt
    name: 'inv_D1_humedad'
    state_topic: 'invernadero/loraD1/humedad'
    unit_of_measurement: '%'

  - platform: mqtt
    name: 'inv_D1_bateria'
    state_topic: 'invernadero/loraD1/voltaje'
    unit_of_measurement: 'volt'

La configuración para añadir una tarjeta en la página es:

o añadiendo las intrucciones en el editor:

entities:
  - entity: sensor.inv_d1_temperatura
  - entity: sensor.inv_d1_humedad
  - entity: sensor.inv_d1_bateria
show_header_toggle: false
theme: default
title: Invernadero Dispositivo 1
type: entities

3.4 LoRa multipunto – Temperatura, Humedad: Gateway Archivo.ino

1. Instrucciones en Arduino IDE

Para el envío de los mensajes hacia el broker MQTT y Home Assistant se usa un dispositivo configurado como gateway.

Se usa un dispositivo en lugar de un concentrador en la etapa de prototipo considerando los costos involucrados. La próxima tarea es desarrollar el gateway usando un concentrador, cuyo valor es  más alto.

/* Gateway LoRa
  Lora/Wifi/MQTT/Home-Assistant
  Envia información por red Lora/Gateway WiFi
  hacia un broker MQTT y gestionar datos en Home-Assistant
  edelros@espol.edu.ec
  http://blog.espol.edu.ec/edelros/
  
  Referencia: Aaron.Lee www.heltec.cn
  https://github.com/Heltec-Aaron-Lee/WiFi_Kit_series
*/
#include "heltec.h"
#include <WiFi.h>
#include <PubSubClient.h>

// DISPOSITIVO LORA Banda ISM en Región 915Mhz
#define BAND  915E6 //433E6,868E6,915E6
// ranges from 6-12,default 7 see API docs
byte spread_factor = 8;

// LoRa Mensaje a enviar por direcciones
String paqueteEnv = "";
byte dir_local   = 0xC1; // Concentrador 1
byte dir_destino = 0xD1; // Dispositivo 1
byte msjContador = 0; // identificador de mensaje
// tiempo entre lecturas
long t_anterior = 0;
int  t_intervalo = 4000;

// LoRa Mensaje Recibido
byte dir_envio = 0xC1; // Concentrador 1
int dir_remite = 0xD0; // Inicia Remitente
String paqueteRcb = "";
byte   paqrcbID = 0;
byte   paqrcbEstado = 0;
  // 0:vacio, 1: nuevo, 2:incompleto
  // 3:otro destinatario, 4:Broadcast

 // Mensajes por Puerto Serial
volatile boolean serial_msj = true;

// WIFI: conexión a Router
char* ssid = "giotirni20";
char* password = "Anera2020@";

// MQTT: Servidor
char* MQTT_IP = "192.168.10.50";
uint16_t MQTT_puerto = 1883;
char* MQTT_usuario = "usuarioprueba";
char* MQTT_contrasena = "usuarioclave";

// MQTT: Dispositivo Sensor
char* MQTT_ID = "LoraGatewayC1";
char MQTT_TOPIC_T[50] = "invernadero/loraD1/temperatura";
char MQTT_TOPIC_H[50] = "invernadero/loraD1/humedad";
char MQTT_TOPIC_V[50] = "invernadero/loraD1/voltaje";
char MQTT_SensorEstado[10] = "OFF";
volatile boolean mqtt_desconectado = true;
// MQTT: Dispositivo Actuador
char* MQTT_COMMAND = "invernadero/loraD1/cambia";
char MQTT_ActuadorEstado[10] = "OFF";
volatile boolean actuador_estado = false;
volatile boolean actuador_bandera = false;
char temperatura[10]  = "00.00";
char humedad[10] = "00.00";
char voltaje[10] = "00.00";

// Clientes WiFi y MQTT
WiFiClient wificlient;
PubSubClient mqttclient(wificlient);

void setup(){
  Heltec.begin(false /*DisplayEnable Enable*/,
    true /*Heltec.Heltec.Heltec.LoRa Disable*/,
    serial_msj /*Serial Enable*/,
    true /*PABOOST Enable*/,
    BAND /*long BAND*/);
  // ranges from 6-12,default 7 see API docs
  LoRa.setSpreadingFactor(spread_factor);
  
  //LoRa.onReceive(cbk);
  LoRa.receive();
  
  // conexión WIFI y MQTT
  inicia_wifi();
  if (WiFi.status() == WL_CONNECTED){
    inicia_mqtt();
    }
}

void loop(){
  // parametros de recepción
  int rssi_lora = 0;
  int snr_lora = 0;
  
  // Revisa mensajes LoRa entrantes
  int msjRcbLoRa = LoRa.parsePacket();
  if (msjRcbLoRa !=0){
    
    recibirlora(msjRcbLoRa);
    rssi_lora = LoRa.packetRssi();
    snr_lora = LoRa.packetSnr();
       
    if (serial_msj==true){
      Serial.println("remite,msjID,mensaje,estado,Rssi,Snr");
      Serial.print(String(dir_remite, HEX)); Serial.print(",");
      Serial.print(paqrcbID); Serial.print(",");
      Serial.print(paqueteRcb); Serial.print(",");
      Serial.print(paqrcbEstado); Serial.print(",");
      Serial.print(rssi_lora); Serial.print(",");
      Serial.println(snr_lora);
    }
    yield(); // procesa wifi
    
    // LED parpadea Rebibido Lora
    digitalWrite(LED, HIGH); delay(50);
    digitalWrite(LED, LOW); delay(50);
    digitalWrite(LED, HIGH); delay(50);
    digitalWrite(LED, LOW);
    yield(); // procesa wifi
    delay(100);
  }

  // Procesa a MQTT mensaje completo
  if (msjRcbLoRa !=0 && paqrcbEstado == 1){
    // Separa parámetros
    String t = paqueteRcb.substring(1,6);
    String h = paqueteRcb.substring(8,10);
    String v = paqueteRcb.substring(12);
    
    // procesa tópico MQTT
    
    // añade dispositivo
    String topico = "invernadero/lora";
    String remite = String(dir_remite, HEX);
    remite.toUpperCase();
    topico = topico + remite;
    
    // procesa topico
    String topicot = topico + "/temperatura";
    String topicoh = topico + "/humedad";
    String topicov = topico + "/voltaje";
    topicot.toCharArray(MQTT_TOPIC_T,topicot.length()+1);
    topicoh.toCharArray(MQTT_TOPIC_H,topicoh.length()+1);
    topicov.toCharArray(MQTT_TOPIC_V,topicov.length()+1);

    t.toCharArray(temperatura,t.length()+1);
    h.toCharArray(humedad,h.length()+1);
    v.toCharArray(voltaje,v.length()+1);
    Serial.println(topicov);

    
   publica_estado();
  }
  yield(); // procesa wifi
  delay(20);

  // reenviar a dispositivo
  if (actuador_bandera == true){
    msjContador = msjContador +1;
    enviarlora(dir_destino, dir_local, 
               msjContador, paqueteEnv);
    actuador_bandera = false;
  }
  yield(); // procesa wifi
  delay(20);
  
  if (WiFi.status() != WL_CONNECTED){
    inicia_wifi();
  }else{
    if (mqttclient.connected()==false){
      mqtt_desconectado = true;
      inicia_mqtt(); // reintento
    }
    if (mqttclient.connected()==true){
      if (mqtt_desconectado==true){
        publica_estado();
        mqtt_desconectado=false;
      }
      mqttclient.loop();
    }
  }
  yield(); // procesa wifi
}


void enviarlora(byte destino, byte remite,
                byte paqueteID, String paquete){
  // espera que el radio esté listo
  // para enviar un paquete
  while(LoRa.beginPacket() == 0){
    if (serial_msj==true){
      Serial.println("Esperando radio disponible...");
    }
    yield(); // procesa wifi
    delay(100);
  }
  // envio del mensaje LoRa
  LoRa.beginPacket();
  LoRa.write(destino);
  LoRa.write(remite);
  LoRa.write(paqueteID);
  LoRa.write(paquete.length());
  LoRa.print(paquete);
  LoRa.endPacket();
}

void recibirlora(int tamano){
  if (tamano == 0){ 
    paqrcbEstado = 0; //vacio
    return;
  }
    
  // lectura de paquete
  paqueteRcb = "";
  dir_envio = LoRa.read();
  dir_remite  = LoRa.read();
  paqrcbID = LoRa.read();
  byte paqrcbTamano = LoRa.read();
  while(LoRa.available()){
    paqueteRcb += (char)LoRa.read();
  }
  
  if (paqrcbTamano != paqueteRcb.length()){
    paqrcbEstado = 2; // Tamaño incompleto
    return;
  }
  if (dir_envio != dir_local){
    paqrcbEstado = 3; // otro destino
    return;
  }
  if (dir_envio == 0xFF) {
    paqrcbEstado = 4; // Broadcast
    return;
  }
  paqrcbEstado = 1;  // mensaje Nuevo
}

void inicia_mqtt(void){
  int intentosmqtt = 5;
  int cuentamqtt = 0;
  
  if (serial_msj){
    Serial.print(" MQTT Conectando a ");
    Serial.println(MQTT_IP);
    }

  mqttclient.setServer(MQTT_IP, MQTT_puerto);
  mqttclient.connect(MQTT_ID, MQTT_usuario, MQTT_contrasena);
  mqttclient.setCallback(recibirmqtt);
  
  while (!mqttclient.connected() && (cuentamqtt<=intentosmqtt)){
    if (serial_msj){
      Serial.print(".");
    }
    cuentamqtt = cuentamqtt + 1;
    // LED Monitor parpadeo MQTT
    digitalWrite(LED, HIGH); delay(200);
    digitalWrite(LED, LOW); delay(200);
  }
  if (mqttclient.connected()){
      publica_estado();
  }
  if (serial_msj){
    //Fin de "...."
    Serial.println();
    Serial.print(" MQTT Conectado: ");
    Serial.print(mqttclient.connected());
    Serial.print("\t MQTT Estado: ");
    Serial.println(mqttclient.state());
  }
}

void publica_estado() { 

  if (mqttclient.connected()==true){
    mqttclient.publish(MQTT_TOPIC_T,temperatura,true);
    mqttclient.publish(MQTT_TOPIC_H,humedad,true);
    mqttclient.publish(MQTT_TOPIC_V,voltaje,true);
    mqttclient.subscribe(MQTT_COMMAND);
  }else{
    mqtt_desconectado = true;
  }
}

// llega mensaje MQTT, callback mqtt
void recibirmqtt(char* p_topic, byte* p_payload,
                  unsigned int p_length) {
  Serial.println("un mensaje mqtt");
  Serial.println(p_topic);
  // convierte a texto
  String payload;
  for (uint8_t i = 0; i < p_length; i++) {
    payload.concat((char)p_payload[i]);
    }
  // String dispositivo = p_topic[16] + String(p_topic[17]);
  char dispositivo[3] = "D0";
  dispositivo[1]=p_topic[17];
  dir_destino = (int) strtol(dispositivo,NULL,16);
  paqueteEnv = payload;
  actuador_bandera = true;

  if (mqttclient.connected()==true){
    mqttclient.subscribe(MQTT_COMMAND);
  }else{
    mqtt_desconectado = true;
  }
}

void inicia_wifi(void) {
  int intentoswifi = 10;
  int cuentawifi = 0;
  
  if (serial_msj){
    Serial.print(" WiFi Conectando a ");
    Serial.println(ssid);
    }
  
  WiFi.disconnect(true);
  delay(1000);
  WiFi.mode(WIFI_STA);
  WiFi.setAutoConnect(true);
  WiFi.begin(ssid,password);
  delay(100);
  
  while(WiFi.status() != WL_CONNECTED && 
             cuentawifi < intentoswifi){
    if (serial_msj){
      Serial.print(".");
      }
    cuentawifi = cuentawifi + 1;
    // Parpadeo de Monitor Wifi
    digitalWrite(LED, HIGH);delay(300);
    digitalWrite(LED, LOW);delay(200);
  }
  if (serial_msj){
    // mensaje a serial
    Serial.println();
    if (WiFi.status() == WL_CONNECTED){
      Serial.print(" Estado: ");
      Serial.println(WiFi.status());
      Serial.print(" MAC: ");
      Serial.println(WiFi.macAddress());
      Serial.print(" IP: ");
      Serial.println(WiFi.localIP());
      Serial.print(" RSSI: ");
      Serial.println(WiFi.RSSI());
      Serial.println();
    }
    if (WiFi.status() != WL_CONNECTED){
        WiFi.printDiag(Serial);
        Serial.println();
    }
  }
}

3.3 LoRa multipunto – Temperatura, Humedad: Dispositivo Archivo.ino

1. Instrucciones en Arduino IDE

Para facilitar la programación, se separan en funciones las acciones para enviar y recibir mensajes Lora y las de manejo de sensor/actuador.

El sensor DTH-11 se conecta al pin 13

El sensor de bateria se conecta al pin 36 como entrada analógica.

/*
  Dispositivo Sensor Temperatura y Humedad con DHT11
  Broker: MQTT/Home-Assistant
  Red ruta: LoRa/WiFi/Ethernet
  edelros@espol.edu.ec
  http://blog.espol.edu.ec/edelros/
  Referencia: Ejemplos de Aaron.Lee www.heltec.cn
*/
#include "heltec.h"
#include "DHT.h"

// Sensor de Temperatura&Humedad
#define DHTPIN 13
#define DHTTYPE DHT11 
DHT dht(DHTPIN, DHTTYPE);
String temperatura = "";
String humedad = ""; 

// Sensor de Bateria
# define BattPIN 36
String battNivel;

//Banda LoRa 915Mhz - ISM en Región 
#define BAND  915E6 // 433E6,868E6,915E6
// ranges from 6-12,default 7 see API docs
byte spread_factor = 8;

// Mensaje a enviar por direcciones
byte dir_local   = 0xD1; // Dispositivo  1
byte dir_destino = 0xC1; // Concentrador 1
// identificador de mensaje
byte msjContador = 0;
// tiempo entre lecturas
long t_anterior = 0;
int  t_intervalo = 5000;

// Mensaje Recibido
byte dir_envio = 0xC1; // Concentrador 1
int dir_remite = 0xD0; // Inicia Remitente
String paqueteRcb = "";
byte   paqrcbvID = 0;
byte   paqrcbEstado = 0;
  // 0:vacio, 1: nuevo, 2:incompleto
  // 3:otro destinatario, 4:Broadcast

 // Mensajes por Puerto Serial
volatile boolean serial_msj = true;

void setup(){
  Heltec.begin(false /*DisplayEnable Enable*/,
    true /*Heltec.Heltec.Heltec.LoRa Disable*/,
    serial_msj /*Serial Enable*/,
    true /*PABOOST Enable*/,
    BAND /*long BAND*/);
    
  // ranges from 6-12,default 7 see API docs
  LoRa.setSpreadingFactor(spread_factor);
  //LoRa.onReceive(cbk);
  LoRa.receive();

  //inicializa sensores
  pinMode(DHTPIN, INPUT);
  dht.begin();
  pinMode(BattPIN, INPUT);
  }

void loop(){
  // Enviar mensajes entre intervalos
  long t_ahora = millis();
  long t_transcurrido = t_ahora - t_anterior;

  // parametros de recepción
  int rssi_lora = 0;
  int snr_lora = 0;
  
  if (t_transcurrido >= t_intervalo){
    sensorLeeDHT(); //actualiza estado del sensor
    sensorBateria(); // actualiza estado de bateria
    
    // Construye paquete a enviar
    String paqueteEnv = "";
    paqueteEnv = paqueteEnv + "t" + temperatura;
    paqueteEnv = paqueteEnv + "|";
    paqueteEnv = paqueteEnv + "h" + humedad;
    paqueteEnv = paqueteEnv + "|";
    paqueteEnv = paqueteEnv + "v" + battNivel;
    
    enviarlora(dir_destino, dir_local,
               msjContador, paqueteEnv);
    
    msjContador = msjContador + 1;
    
    // parametros de recepción
    rssi_lora = LoRa.packetRssi();
    snr_lora = LoRa.packetSnr();
    yield();
    
    // mensaje a serial
    if (serial_msj==true){
      Serial.print(String(dir_destino,HEX));
      Serial.print(",");
      Serial.print(String(dir_local,HEX));
      Serial.print(",");
      Serial.print(msjContador);Serial.print(",");
      Serial.print(paqueteEnv.length());Serial.print(",");
      Serial.print(paqueteEnv);Serial.print(",");
      Serial.print(rssi_lora);Serial.print(",");
      Serial.println(snr_lora);
    }
    
    t_anterior = millis();
    t_intervalo = 3000 + random(2000);
    
    // LED parpadea envio lora
    digitalWrite(LED, HIGH); delay(100);
    digitalWrite(LED, LOW);  delay(100);
    yield(); // procesa wifi
  }

  // Revisar mensajes LoRa entrantes
  int msjRcbLoRa = LoRa.parsePacket();
  if (msjRcbLoRa !=0){
    recibirlora(msjRcbLoRa);
    rssi_lora = LoRa.packetRssi();
    snr_lora = LoRa.packetSnr();
    
    if (serial_msj==true){
      if (paqrcbEstado == 1){
        Serial.println("Mensaje: " + paqueteRcb);
        Serial.println("RSSI: " + String(rssi_lora));
        Serial.println("Snr: " + String(snr_lora));
        Serial.println();
      }else{
        Serial.print("Paquete recibido Estado: ");
        Serial.println(paqrcbEstado);
      }
    }
    yield(); // procesa wifi
    
    // LED parpadea Recibido Lora
    digitalWrite(LED, HIGH); delay(50);
    digitalWrite(LED, LOW); delay(50);
    digitalWrite(LED, HIGH); delay(50);
    digitalWrite(LED, LOW);
  }
  delay(100);
  yield(); // procesa wifi
}

void enviarlora(byte destino, byte remite,
                byte paqueteID, String paquete){
  // espera que el radio esté listo
  // para enviar un paquete
  while(LoRa.beginPacket() == 0){
    if (serial_msj==true){
      Serial.println("Esperando radio disponible...");
    }
    yield(); // procesa wifi
    delay(100);
  }
  // envio del mensaje LoRa
  LoRa.beginPacket();
  LoRa.write(destino);
  LoRa.write(remite);
  LoRa.write(paqueteID);
  LoRa.write(paquete.length());
  LoRa.print(paquete);
  LoRa.endPacket();
}

void recibirlora(int tamano){
  if (tamano == 0){ 
    paqrcbEstado = 0; //vacio
    return;
    }
  // lectura de paquete
  paqueteRcb = "";
  dir_envio = LoRa.read();
  dir_remite  = LoRa.read();
  paqrcbvID = LoRa.read();
  byte paqrcbTamano = LoRa.read();
  while(LoRa.available()){
    paqueteRcb += (char)LoRa.read();
  }
  if (paqrcbTamano != paqueteRcb.length()){
    paqrcbEstado = 2; // Tamaño incompleto
    return;
  }
  if (dir_envio != dir_local){
    paqrcbEstado = 3; // otro destino
    return;
  }
  if (dir_envio == 0xFF) {
    paqrcbEstado = 4; // Broadcast
    return;
  }
  paqrcbEstado = 1;  // mensaje Nuevo
}

// Sensor lecturas
void sensorLeeDHT(){
  humedad = String(int(dht.readHumidity())).c_str();
  temperatura = String(dht.readTemperature()).c_str();
}

void sensorBateria(){
  int lectura = analogRead(BattPIN);
  // convierte a equivalente en voltios
  float voltaje = (float(lectura)/4096.0)*4.2*3.0/2.0;
  battNivel = String(voltaje).c_str();
}

3.2 LoRa multipunto – Temperatura, Humedad: Esquemático LoRa32

El primer prototipo se realiza usando una placa de desarrollo Heltec Lora 32. EL punto de partida es LoRa multipunto añadiendo los siguientes componentes:

  • Sensor de Temperatura y Humedad DHT-11, puede ser actualizado a DHT-22 para mayor precisión. Se empieza con DHT-11 por tenerlo disponible al inicio.
  • Bateria para añadir portabilidad
  • Panel solar para alimentación, usando un módulo de carga de batería.

3.1 LoRa multipunto – Temperatura, Humedad

Presentación

El sensor numérico más sencillo de implementar es del de temperatura-Humedad con el sensor DHT-11 o DHT-22. Un requerimiento para el  dispositivo es operar a batería, con opción de carga con un panel solar.

El uso de la batería limita el consumo de energía, los módulos LoRa al ser de bajo consumo son los seleccionados.

El punto de partida es la configuración LoRa Multipunto, que modificando e valor del sensor enviado y los elementos correspondientes en MQTT, permite visualizar en la página del broker Home-assistant el valor del sensor.

2.5 LoRa Multipunto – errores de recepción en Gateway

Usando el ejemplo de comunicación multipunto, se revisa la secuencia de paquetes (msjID) enviada por cada uno de los nodos/dispositivos con mensajes que se envían con intervalos aleatorios entre [2-4 segundos].

La base de tiempo de 2 segundos se considera como tiempo que toma un sensor de temperatura DHT11 en dar una nueva lectura.

https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf

Para la lectura de los datos desde el gateway se usa la comunicación por puerto serial (USB). de los datos de cada mensaje se usa el identificador de mensaje (msjID) que indica el orden del mensaje enviado.

Ejemplo de mensaje obtenido por puerto serial desde el «gateway simple»

remite,msjID,mensaje,estado,Rssi,Snr
d2,173,ON,1,-75,12

Usando como factor LoRa.setSpreadingFactor(8), se reduce la tasa de errores desde 0.36 en modo predeterminado de los dispositivos.

Ejemplo de resultados obtenidos.

ID	 [1 2]
cuenta	 [1879 1871]
errores	 [254 312]
increm	 [1 1]
antes	 [190 173]
%error 	 [0.14 0.17]

Instrucciones en Python

# prueba de recepción de mensajes
# en Gateway LoRa mutipunto
# edelros@espol.edu.ec

import numpy as np
import serial, time

# INGRESO
puerto = 'com8'
baudios = 115200
n = 2
encabezado =['ID','cuenta',
             'errores','increm',
             'antes']
m = len(encabezado)
tabla = np.zeros(shape=(n+1,m),dtype=int)
d_error = np.zeros(n+1,dtype=float)

for f in range(1,n+1,1):
    tabla[f,0]=f

# PROCEDIMIENTO
arduino = serial.Serial(puerto, baudios)
arduino.setDTR(False)
time.sleep(0.3)

# limpia buffer de datos anteriores
arduino.flushInput()  
arduino.setDTR()  
time.sleep(0.3)
print('\nEstado del puerto: ',arduino.isOpen())
print('Nombre del dispositivo conectado: ', arduino.name)
print('Dump de la configuración:\n ',arduino)
print('\n###############################################\n')

np.set_printoptions(precision=2)
# Lectura de datos
while True:
    # espera hasta recibir un dato
    while (arduino.inWaiting()==0):
        pass
    
    # lee binario del puerto serial
    lectura = arduino.readline()
    # binario a texto, elimina /r/n
    texto = lectura.decode().strip()
    print(texto)
    tamano = len(texto)
    if tamano>=3:
        if (texto[0]=='d' and texto[2]==','):
            partes = texto.split(',')
            msjID = int(partes[0][1])
            
            # incremento
            antes = tabla[msjID,4]
            ahora = int(partes[1])
            tabla[msjID,4] = ahora
            incremento = ahora - antes
            tabla[msjID,3] = incremento
            # cuenta
            if antes>0 and incremento>0:
                tabla[msjID,1]=tabla[msjID,1] + incremento
            # error
            if (tabla[msjID,1]>1 and incremento>1):
                tabla[msjID,2] = tabla[msjID,2]+incremento-1
            if (tabla[msjID,1]>0):
                d_error[msjID]=float(tabla[msjID,2])/tabla[msjID,1]
            for i in range(0,m,1):
                print(encabezado[i]+"\t",tabla[1:,i])
            print("%error \t",d_error[1:])
    
# Cerrar el puerto serial.
serial.Serial.close