2.1 Método de la Bisección – Concepto

[ Bisección ] [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ función ]

..


Método de la Bisección

Referencia: Burden 2.1 p36, Chapra 5.2 p124, Rodríguez 3.1 p36

El método más simple para buscar raíces de una ecuación, se basa en el teorema del valor intermedio, búsqueda binaria, partición de intervalos o de Bolzano.

Método de la Bisección animado

En el intervalo donde existe un cruce por cero de la función f(x), el algoritmo busca la raíz al reducir el intervalo en la mitad (bisección), seleccionando el sub- intervalo donde se mantenga el cambio de signo de la función f(x).

Los pasos a seguir son los siguientes:

  • el intervalo [a,b] se divide siempre en la mitad c.
  • Si la función f(x) cambia de signo sobre un intervalo, se evalúa el valor de la función en el punto medio f(c).
  • La posición de la raíz se determina en el punto medio del sub-intervalo, izquierdo o derecho,  dentro del cual ocurre un «cambio de signo».
  • el proceso se repite hasta obtener una mejor aproximación

La gráfica muestra una animación del proceso, observe la forma en que progresivamente se acercan los puntos [a,b], donde se mantienen valores con signo diferente entre f(a) y f(b).

Para describir mejor el método, observamos la gráfica en una sola iteración.
Para la primera iteración se tiene que la función tiene un cambio de signo dentro del intervalo [a,b].

El intervalo se divide en la mitad, representado por el punto c, obteniendo el sub-intervalo izquierdo [a,c] o sub-intervalo derecho [c,b].

El sub-intervalo que contiene la función con un cambio de signo, se convierte en el nuevo intervalo por analizar en la siguiente iteración.

[ Bisección ] [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ función ]


Cota de Error

Referencia: Burden Teorema 2.1  p39.

El error del método de la bisección se estima como el ancho o tamaño del intervalo [a,b] de la última iteración realizada. Si el error es menor que la tolerancia del ejercicio, el algoritmo se detiene y se considera encontrada la raíz.

Suponga que f ∈ C[a,b] y f(a)*f(b)<0, f es una función en el intervalo [a,b] y que presenta un cambio de signo.

|p_n - p| \leq \frac{b-a}{2^n} \text{donde } n \geq 1

la desigualdad implica que pn converge a p con una razón de convergencia de orden:

O \Big(\frac{1}{2^n}\Big)

es decir:

p_n =p+O \Big( \frac{1}{2^n} \Big)

Con lo que se puede determinar el número de iteraciones necesarias para encontrar la raíz, tal como se muestra en el siguiente ejercicio.

[ Bisección ] [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ función ]


Cantidad de iteraciones – Ejercicio

Referencia: Burden ejemplo 2  p40

Determine la cantidad de iteraciones necesarias para resolver

f(x) = x^3 + 4x^2 -10 =0

con exactitud de 10 – 3 en el intervalo [1,2].

Desarrollo: Se busca encontrar un entero n que satisface la ecuación:

|p_n -p| \leq \frac{b-a}{2^{n}} 2^{-n}< 10^{-3}

usando logaritmos:

-n \log _{10}( 2) < -3 n > \frac{3}{\log _{10}( 2)} = 9.96

En consecuencia se requieren unas diez iteraciones para lograr la aproximación de 10-3. Verifique los resultados con los valores calculados.

[ Bisección ] [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ función ]

Unidad 2 Raíces de ecuaciones en una variable

Métodos Cerrados

Método de Bisección: [ Concepto  ] [ Ejemplo Python ]

Método de la Posición Falsa: [ Concepto ] [ Ejemplo Python ]

Métodos Abiertos

Método del Punto Fijo: [ Concepto ] [ Ejemplo Python ]

Método de Newton-Raphson: [ Concepto ] [ Ejemplo Python ]

Método de la Secante: [ Concepto ] [ Ejemplo Python ]

Tema de introducción

Un asteroide recién descubierto pasará este jueves muy cerca de la Tierra. 23 de septiembre, 2020. https://www.eluniverso.com/noticias/2020/09/23/nota/7987777/asteroide-recien-descubierto-pasara-este-jueves-muy-cerca-tierra

3Eva_2020PAOI_T1 Distancia mínima en trayectoria