Tema 5

Examen | 2018-2019 | Término 2 | Segunda Evaluación | Tema 5

Considere el siguiente teorema: Si V y U son dos espacios vectoriales sobre un campo \mathbb{K}, V de dimensión finita y L:V\longrightarrow U una transformación lineal, entoncesRango\,(L)+Nulidad\,(L)=dim\,(V)
A continuación, se presenta un conjunto de pasos que ordenados pertinentemente representan la demostración de este teorema para el caso en que k=Nulidad\,(L)<dim\,(V)=n. En cada círculo en blanco indique el orden que corresponda al paso adjunto para que la demostración sea expresada de manera correcta.

\bigcirc Si u\in Im\,(L), entonces existe un vector v\in V tal que L(v)=u y v=\alpha_1 v_1+\alpha_2 v_2+...+\alpha_n v_n con \alpha_1,\alpha_2,...,\alpha_n \in \mathbb{K}.
\bigcirc Se obtiene entonces que
{Rango\,(L)+Nulidad\,(L)=(n-k)+k=n=dim\,(V)}.
\bigcirc Sea B_1=\{v_1,v_2,...,v_k\} una base para el Ker\,(L).
\bigcirc T debe ser inyectiva.
\bigcirc Existen entonces c_1,c_2,...,c_k\in \mathbb{K} tales que \gamma_{k+1}v_{k+1}+...+\gamma_{n}v_{n}=c_1 v_1+c_2 v_2 +...+c_k v_k, de donde c_1 v_1 + c_2 v_2 +...+c_k v_k -\gamma_{k+1}v_{k+1}-...-\gamma_{n}v_{n}=0_V.
\bigcirc Se pueden elegir vectores v_{k+1},v_{k+2},...,v_{n} tales que B=\{v_1,v_2,...,v_n\} sea una base para V.
\bigcirc Se tiene entonces que c_1=c_2=...=c_k=\gamma_{k+1}=...=\gamma_n=0 por lo tanto \{ L(v_{k+1}),...,L(v_n) \} es linealmente independiente y base de Im(L).
\bigcirc Si \gamma_{k+1}L(v_{k+1})+...+\gamma_{n}L(v_{n})=0_U se tiene que L(\gamma_{k+1}v_{k+1}+...+\gamma_{n}v_n)=0_U, esto es \gamma_{k+1}v_{k+1}+...+\gamma_{n}v_n\in Ker(L).
\bigcirc Luego, u=\alpha_{k+1}L(v_{k+1})+...+\alpha_n L(v_n), por lo tanto \{ L(v_{k+1}),...,L(v_n) \} genera a Im(L).

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL