3.2 LTI CT – Respuesta a entrada cero ZIR – Desarrollo analítico

Referencia: Lathi 2.1 p151, Hsu 2.5.B p60, Oppenheim 2.14 p118

La respuesta a entrada cero de un sistema se obtiene aplicando x(t)=0 en la ecuación diferencial lineal, es decir no se le aplica una señal de entrada. La respuesta a entrada cero, Zero Input Response (ZIR), también es conocida como la solución a la ecuación diferencial homogénea, en la que x(t)=0.

Respuesta
total
= respuesta a
entrada cero ZIR
+ respuesta a
estado cero ZSR

La respuesta a entrada cero permite observar las condiciones internas del sistema, cargas en capacitores o corrientes en inductores como energía residual de los estados anteriores al de observación.

La ecuación diferencial lineal homogénea se obtiene también hacer x(t)=0, de una forma:

a_0 \frac{d^2}{dt^2}y(t) +a_1\frac{d}{dt}y(t) + a_2y(t) = 0

..


Ejemplo 1. Respuesta a entrada cero ZIR para un sistema LTI CT – Desarrollo analítico

Referencia: Lathi Ejemplo 2.1.a p155, Oppenheim ej2.14 p118, ejemplo 1 de Modelo entrada-salida

Encuentre la respuesta a entrada cero (ZIR) para el sistema LTI CT del circuito RLC, descrito por la ecuación diferencial lineal:

\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} (D^2 + 3D +2)y(t) = Dx(t)

con las condiciones o valores iniciales descritos por:

y0(t) =0
y’0(t) =-5

La entrada cero del circuito, x(t)=0 convierte la ecuación lineal en homogénea. Para entrada cero se usa x(t)=0, se quita la fuente y se cierra el circuito para observar lo que hace el sistema sin señal de entrada.

\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = 0 (D^2 + 3D +2)y(t) = 0

Siendo el sistema LTI descrito por los polinomios de operadores D descritos como Q(D) y P(D), la ecuación se simplifica al eliminar P(D):

Q(D) y(t) = P(D) x(t) (D^2 + 3D +2)y(t) = 0

Q(D) es la ecuación característica o auxiliar del sistema:

\lambda ^2 + 3\lambda +2 = 0

Al buscar las raíces de λ, se escribe la ecuación en sus factores y se puede buscar los modos característicos,

(\lambda +1)(\lambda + 2) = 0
Raíces características Modos característicos
λ1 = -1 e-t
λ2 = -2 e-2t

Con los modos característicos se plantea la solución general y0(t) como la suma de los modos característicos con coeficientes aún por determinar.

y_0 (t) = c_1 e^{-t} + c_2 e^{-2t}

Para determinar los valores de las constantes c1 y c2 se aplican las condiciones iniciales para t0=0. Del enunciado del ejercicio se tiene que No hay señal en la salida al tiempo cero y(0)=0, además que la variación es negativa y'(0)=-5:

Las restricciones indicadas también son conocidas como condiciones auxiliares, solo cuando estas condiciones son dadas para t=0 se denominan condiciones iniciales o valores iniciales (Lathi p161).

En la primera condición con t=0, la salida:

y_0 (0) = 0 y(t)\Big|_{t=0} = c_1 e^{-0} + c_2 e^{-2(0)} c_1+c_2 = 0

en el caso para la condición de primera derivada:

y'_0 (0) = -5 y'_0(t)\Big|_{t=0} = \frac{d}{dt}\Big[ c_1 e^{-t} + c_2 e^{-2t}\Big]\Big|_{t=0} =\Big[ -c_1 e^{-t} -2c_2 e^{-2t}\Big] \Big|_{t=0} = -c_1 e^{-0} -2c_2 e^{-2(0)} -c_1 -2c_2 = -5

Con lo que con la evaluación de las condiciones iniciales se tiene que:

\begin{cases} c_1 + c_2 = 0\\ -c_1 - 2c_2 = -5 \end{cases}

se resuelve obteniendo:  c1 = -5 ; c2 = 5,
que al sustituir en la ecuación anterior, se encuentra la respuesta a entrada cero ZIR:

y_0(t) = -5e^{-t} +5e^{-2t}

La gráfica muestra el sentido de la corriente, usando la carga residual del capacitor dentro del circuito, a pesar de no tener señal de entrada a partir del tiempo 0 hasta 5:

LTIC Ejercicio 01 ZIR Sympy

Cálculos numéricos con Python

Para determinar los valores de las constantes, se puede usar algunas instrucciones sencillas con Numpy. Para las raíces del polinomio se usan solo los coeficientes de operadores D, ordenados de grado mayor a menor.

D^2 + 3D +2 = 0
import numpy as np
>>> np.roots([1,3,2])
array([-2., -1.])

Para los coeficientes se plantean las ecuaciones de la forma matricial Ax=B:

\begin{cases} c_1 + c_2 = 0\\ -c_1 - 2c_2 = -5 \end{cases}
>>> A = [[ 1, 1],
	 [-1,-2]]
>>> B =  [ 0,-5]
>>> np.linalg.solve(A,B)
array([-5.,  5.])
>>>

Respuesta entrada cero: [Desarrollo Analítico]  [Sympy-Python]  [Scipy-Python]  [Runge-Kutta d2y/dx2]  [Simulador]


Solución general de ecuación auxiliar ay»+by’+c =0

Referencia: Stewart James.  Cálculo de varias variables. 17.1 p1147 pdf544

Raíces de la ecuación característica solución general
raices reales y distintas \lambda_1 , \lambda_2 y=c_1 e^{\lambda_1 t}+c_2 e^{\lambda_2 t}
raíces iguales \lambda_1 = \lambda_2 = \lambda y=c_1 e^{\lambda t}+c_2 t e^{\lambda t}
raíces complejas \alpha \pm i\beta y= e^{\alpha t}(c_1 \cos{\beta t}+c_2 \sin{\beta t})

 

3.1 LTI CT – Modelo entrada-salida para circuitos RLC y ecuaciones diferenciales

Referencia: Lathi 1.8 p111, Schaum/Hsu 2.5.B p60, Oppenheim 2.56.d p160, p700

La descripción de un sistema en términos de las mediciones en los extremos se denomina Modelo de entrada-salida.

Una forma es describir la relación entre salida/entrada se expresa usando operadores de diferenciación D:

\frac{y(t)}{x(t)} = \frac{P(D)}{Q(D)}

La respuesta de un sistema lineal puede también ser expresada como la suma de dos componentes: respuesta a entrada cero ZIR y respuesta a estado cero ZSR.

Respuesta
total
= respuesta a
entrada cero
+ respuesta a
estado cero

Para el caso de un circuito eléctrico RLC, el modelo inicia con la descripción de la ecuación diferencial lineal que relaciona el voltaje x(t) de entrada y la corriente de salida y(t).


Ejemplo 1. Corriente en circuito RLC y Ecuaciones Diferenciales Lineales de 2do orden

Referencia: Lathi 1.8-1 p111. Oppenheim problema 2.61c p164 Ejemplo 9.24 p700

Para el ejemplo, se plantea determinar la corriente de lazo y(t) del circuito mostrado en la imagen. FIEC05058_RLC

Usando la ley de voltajes en lazo se tiene que:

vL(t) + vR(t) +vC(t) = x(t)

que con las leyes de corriente para cada elemento (inductor, resistor y capacitor) se traducen en la ecuación integro-diferencial:

\frac{dy(t)}{dt} +3 y(t) + 2\int_{-\infty}^t y(\tau)d\tau = x(t)

Para tener todo expresado con un solo operador, se derivan ambos lados de la ecuación:

\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt}

que es la relación de «entrada-salida» del sistema con la entrada x(t) y la salida y(t) que permitirá analizar el sistema que representa al circuito.


Notación D para derivadas y 1/D para integrales

Por conveniencia, para usar una notación más compacta de la ecuación diferencial, el operador dy/dt se cambia por la notación D.

\frac{d}{dt}y(t) = Dy(t) \frac{d^2}{dt^2} y(t) = D^{2}y(t)

Que convierte la ecuación de entrada-salida a la expresión:

(D^2 + 3D +2)y(t) = Dx(t)

que es identica a la expresión de entrada y salida que describe al circuito.

El operador diferencial D también se interpreta con la notación para integrales,

\int_{-\infty}^t y(\tau)d\tau = \frac{1}{D}y(t)

por lo que la expresión integro-diferencial del circuito,

\frac{d}{dt}y(t) +3 y(t) + 2\int_{-\infty}^t y(\tau)d\tau = x(t)

también se puede escribir en notación D como:

D y(t) + 3 y(t)+ \frac{2}{D} y(t) = x(t)

Al multiplicar ambos lados por el operador D se convierte nuevamente en una expresión sin denominadores D, semejante a la expresión que usa solo diferenciales.

\Big( D^2 + 3D + 2 \Big) y(t) = D x(t)

Recuerde: la expresión con operadores D, NO ES una ecuación algebraica, pues la expresión de operadores D aplican solo a y(t).

En adelante, para el sistema o circuito descrito por ecuaciones diferenciales se usa el operador D=\frac{d}{dt}, por ejemplo:

a_2 \frac{d^2}{dt^2}y(t) + a_1 \frac{d}{dt}y(t) + a_0 y(t) = b_1\frac{d}{dt}x(t) + b_0x(t) a_2 D^ 2y(t) + a_1 Dy(t) + a_0y(t) = b_1Dx(t) + b_0 x(t) (a_2 D^ 2 + a_1 D + a_0)y(t) = (b_1D + b_0 )x(t)

las expresiones de los operadores D de cada lado se conocen también como P(D) y Q(D)

Q(D) y(t) = P(D) x(t) P(D) = b_1D + b_0 Q(D) = a_2 D^ 2 + a_1 D + a_0

La relación de salida/entrada del sistema se expresa como:

\frac{y(t)}{x(t)} = \frac{b_1D + b_0}{a_2 D^ 2 + a_1 D + a_0}


Ejercicio 2. Voltaje de un Circuito RC como una Ecuación Diferencial Lineal de 1er Orden

Referencia: Lathi Ejemplo 1.17 p113.

Usando la notación del operador D, encuentre la relación de salida/entrada para el circuito RC.  Para ésto defina i(t) como la corriente del circuito y como y(t) el voltaje del capacitor.

La corriente del lazo i(t) del circuito:

R i(t) +\frac{1}{C} \int_{-\infty}^{t} i(\tau) \delta \tau = x(t)

cambiando al operador D

R i(t) +\frac{1}{C} \frac{1}{D} i(t) = x(t) R D i(t) +\frac{1}{C} i(t) = D x(t) \Big(R D +\frac{1}{C}\Big) i(t) = D x(t)

Conociendo que la corriente i(t) en el capacitor depende de la variación de voltaje y(t) y la capacitancia C

i(t) = C \frac{\delta}{\delta t} y(t) = CD y(t)

se sustituye i(t) en la ecuación,

(R D +\frac{1}{C}) CD y(t) = D x(t)

simplificando un operador D

(R D +\frac{1}{C}) C y(t) = x(t) (RC D + 1 ) y(t) = x(t)

Para mostrar la relación de salida/entrada se reordena la expresión:

\frac{y(t)}{x(t)} = \frac{1}{RC D +1} \frac{y(t)}{x(t)} = \frac{\frac{1}{RC}}{D +\frac{1}{RC}}

Expresando con P(D) y Q(D)

Q(D) y(t) = P(D) x(t) P(D) = \frac{1}{RC} Q(D) = D +\frac{1}{RC}

Formas de encontrar una solución

Se pueden plantear varias formas de desarrollo para la solución de la ecuación diferencial lineal, usando los conceptos analíticos y numéricos:

1. Desarrollo analítico, que es el tradicional con papel y lápiz.

2. Desarrollo usando algoritmos en Python:

2.1  desarrollo analítico con fórmulas simbólicas en Sympy-Python
2.2 desarrollo numérico con funciones en Scipy-Python para LTI
2.3 desarrollo numérico con Runge-Kutta d2y/dx2  para EDO del curso  Métodos Numéricos.

3. Desarrollo usando un simulador con:

3.1 usando  diagrama de bloques
3.2 usando un diagrama de circuito

Respuesta entrada cero: [Desarrollo Analítico]  [Sympy-Python]  [Scipy-Python]  [Runge-Kutta d2y/dx2]  [Simulador]