Convolución Integrales – Tabla

Referencia: Lathi Tabla 2.1 p176

Respuesta a estado cero y convolución con Sympy-Python

No x1(t) x2(t) x1(t)⊗x2(t) = x2(t)⊗x1(t)
1 x(t) δ(t-T) x(t-T)
2 eλt μ(t) μ(t) \frac{1-e^{\lambda t}}{-\lambda} \mu (t)
3 μ(t) μ(t) t μ(t)
4 eλ1t μ(t) eλ2t μ(t) \frac{e^{\lambda _1 t}-e^{\lambda _2 t}}{\lambda _1 - \lambda _2} \mu(t)
\lambda _1 \neq \lambda _2
5 eλt μ(t) eλt μ(t) t eλt μ(t)
6 t eλt μ(t) eλt μ(t) \frac{1}{2} t^2 e^{\lambda t} \mu(t)
7 t N μ(t) eλt μ(t) \frac{N! e^{\lambda t}}{\lambda^{N+1}} \mu(t) - \sum_{k=0}^{N}\frac{N! t^{N-k}}{\lambda^{N+1} (N-k)!} \mu(t)
8 t M μ(t) t N μ(t) \frac{M! N!}{(M+N+1)!} t^{M+N+1} \mu (t)
9 t eλ1t μ(t) eλ2t μ(t) \frac{e^{\lambda_2 t}- e^{\lambda_1 t} + (\lambda_1-\lambda_2)te^{\lambda_1 t}}{(\lambda_1-\lambda_2)^2} \mu (t)
10 t M eλt μ(t) t N eλt μ(t) \frac{M! N!}{(M+N+1)!} t^{M+N+1} e^{\lambda t}\mu (t)
11 t M eλ1t μ(t) t^N e^{\lambda_2t} \mu (t) \sum_{k=0}^{M}\frac{(-1)^k M! (N+k)! t^{M-k} e^{\lambda_1t}}{k!(M-k)!(\lambda_1 - \lambda_2)^{N+k+1}} \mu (t)
λ1 ≠λ2 + \sum_{k=0}^{N}\frac{(-1)^k N! (M+k)! t^{N-k} e^{\lambda_2t}}{k!(N-k)!(\lambda_2 - \lambda_1)^{M+k+1}} \mu (t)
12 e^{\alpha t} \cos (\beta t + \theta) \mu (t) eλt μ(t) \frac{\cos(\theta - \phi)e^{\lambda t}-e^{-\alpha t} \cos(\beta t + \theta - \phi)}{\sqrt{(\alpha + \lambda)^2 + \beta^2}} \mu (t)
\phi =tan^{-1} \Big[\frac{-\beta}{(\alpha + \lambda})\Big]
13 eλ1t μ(t) eλ2t μ(-t) \frac{e^{\lambda_1 t} \mu (t) + e^{\lambda_2 t} \mu (-t)}{\lambda_2 -\lambda_1}
\text{Re} \lambda_2 > \text{Re} \lambda_1
14 eλ1t μ(-t) eλ2t μ(-t) \frac{e^{\lambda_1 t} -e^{\lambda_2 t}}{\lambda_2 -\lambda_1} \mu (-t)