3Eva2010TI_T2 LTI CT respuesta de frecuencia

3ra Evaluación I Término 2010-2011. 16/Septiembre/2010. TELG1001

Tema2. (20 puntos) Un estudiante de la materia Sistemas Lineales, ha determinado que la respuesta impulso h(t) de un sistema LTI-CT, es aquella que se muestra en la siguiente figura.

Si el referido sistema es excitado con la señal cuadrada periódica x(t),

determinar, esquematizar y etiquetar según corresponda:

a. La respuesta de frecuencia H(ω) vs ω.

b. La respuesta de frecuencia X(ω) vs ω.

c. La respuesta de frecuencia Y(ω) vs ω y Z(ω) vs ω.

d. La expresión analítica de la salida y(t).


Coordinador: Tama Alberto

 

3Eva2009TII_T3 LTI CT entrada modulada usando Fourier

3ra Evaluación II Término 2009-2010. 18/Febrero/2010. TELG1001

Tema 3. (20 puntos) Para el sistema mostrado en la figura, determinar:

a. La Transformada de Fourier de las señales x1(t) y x2(t), es decir X1(ω) y X2(ω), esquematizando el respectivo espectro de Fourier.

b. La transformada de Fourier de la señal z(t), es decir Z(ω), esquematizando el respectivo espectro de Fourier para cuando a=1 y ω0=2.

c. La transformada de Fourier de la señal y(t), es decir Y(ω), esquematizando su espectro de magnitud y fase para cuando a=1 y ω0=2.

3Eva2009TII_T1 LTI CT respuesta a filtro H(jω)

3ra Evaluación II Término 2009-2010. 18/Febrero/2010. TELG1001

Tema 1. (20 puntos) Una señal de entrada sinusoidal x(t) = cos(10t) es muestreada y filtrada tal como se aprecia en la siguiente figura:

Donde la respuesta de frecuencia del filtro está dada por:

|H(j \omega)| = \begin {cases} 1 , 90 <|\omega|<180 \\ 0, \text{en otro caso}\end{cases} \angle H(j \omega) = - \frac{\pi \omega}{200}

a. Suponiendo que

s(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT) T= \frac{2 \pi}{90}

Determinar, esquematizar y etiquetar la Transformada de Fourier de la señal z(t). Es decir Z(jω).

b. Determinar la respuesta del sistema, es decir, y(t)

2Eva2016TII_T4 resolver en dominio de frecuencia

2da Evaluación II Término 2016-2017. 16/Febrero/2017. TELG1001

Tema 4. (16 puntos) Dadas las siguientes relaciones matemáticas:

y(t) = x(t) \circledast h(t) g(t) = x(3t) \circledast h(3t)

Usando las propiedades de la transformada de Fourier, demuestre que:

g(t) = A\text{ }y(Bt)

y determine el valor de las constantes A y B.


Coordinador: Tama Alberto

2Eva2016TII_T2 LTI CT Circuito RC respuesta de frecuencia H(ω), impulso h(t)

2da Evaluación II Término 2016-2017. 16/Febrero/2017. TELG1001

Tema 2. (28 puntos) Para el circuito eléctrico que se muestra en la siguiente figura:

a. Determinar su función de transferencia.

b. Determinar, esquematizar y etiquetar su respuesta de frecuencia, indicando a que tipo de filtro no ideal de frecuencias selectivas se podría asociar su comportamiento.

c. Obtener la respuesta impulso h(t) que representa el circuito eléctrico.

d. Determinar la respuesta v2(t) que se obtiene a la salida de dicho sistema cuando es exitado con una señal v1(t) = sen(50t) [V]. ¿Qué se puede decir acerca de si el sistema transmite co distorsión o sin distorsión? Justifique su respuesta de manera razonada.


Coordinador: Tama Alberto

2Eva2016TII_T1 LTI CT – diseñar filtro paso alto HPF

2da Evaluación II Término 2016-2017. 16/Febrero/2017. TELG1001

Tema 1. (28 puntos) La señal z(t) a la salida de un multiplicador se aplica como señal de entrada o excitación a un filtro ideal de frecuencias selectivas, tal como se muestra en la siguiente figura.

a. Determinar, esquematizar y etiquetar el espectro de la transformada de Fourier de z(t), es decir Z(ω) vs ω.

b. Diseñar un filtro ideal de paso alto (HPF), indicando las características que debería tener dicho filtro para que a su salida se pueda obtener como respuesta la señal y(t) = 4cos(1200πt). Determine la relación Py(t)/Px(t).

c. Usando propiedades de la transformada de Fourier, obtener la respuesta impulso h(t) de dicho filtro de paso alto.


Coordinador: Tama Alberto

2Eva2012TII_T3 LTI CT en dominio de frecuencias

2da Evaluación II Término 2012-2013. 31/Enero/2013. TELG1001

Tema 3. (35 puntos) Considerar la existencia del sistema mostrado en la siguiente figura, donde el espectro de Fourier de la respuesta impulso h(t) es H(ω).

a. Determinar, esquematizar y etiquetar el espectro de Fourier de x(t), es decir X(ω) vs ω.

b. Determinar la expresión analítica de q(t), como una función de x(t).

c. Determinar, esquematizar y etiquetar los espectros de Fourier de las señales g(t), p(t) y q(t), es decir G(ω), P(ω) y Q(ω) respectivamente.

d. Determinar, esquematizar y etiquetar el espectro de Fourier de y(t), es decir Y(ω) vs ω.

e. Expresar la salida y(t) como una función de x(t).

f. Hallar la energía de la señal de salida y(t), es decir Ey(t).


Coordinador: Tama Alberto

2Eva2012TII_T2 LTI CT armónicos de serie de Fourier

2da Evaluación II Término 2012-2013. 31/Enero/2013. TELG1001

Tema 2. (20 puntos) La siguiente figura muestra el espectro de los coeficientes complejos exponenciales de la serie de Fourier de una señal periódica x(t)

a. Por simple inspección, determine las Series de Fourier complejas exponenciales que representan a x(t)

b. Por simple inspección, esquematice adecuadamente el espectro de los coeficientes de Fourier para la representación armónica (trigonometría compacta).

c. Mediante la aplicación del Teorema de Parseval, determinar la potencia de la señal periódica x(t).


Coordinador: Tama Alberto

2Eva2012TII_T1 LTI CT respuesta impulso

2da Evaluación II Término 2012-2013. 31/Enero/2013. TELG1001

Tema 1. (20 puntos) Un sistema LTIC-CT con respuesta de frecuencia H(ω) es excitado con una entrada x(t) cuyos espectros de Fourier se muestran en la siguiente figura.

a. Determinar la respuesta impulso h(t) y obtener el valor de la energía Eh(t) del mencionado sistema.

b. Determinar, esquematizar y etiquetar la transformada de Fourier de y(t), es decir Y(ω) y ontener el valor de la energía de y(t), es decir Ey(t)

Un estudiante de la materia de Sistemas Lineales ha observado que la salida q(t) del sistema mostrado a continuación, es la señal y(t) obtenida en el literal anterior,

c. Siendo así, determine, esquematice y etiquete la transformada de Fourier de p(t), es decir P(ω) y encuentre el valor ω0.


Coordinador: Tama Alberto