1Eva_IT2012_T3_MN Resolver con Gauss-Jordan

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM02188 Métodos Numéricos

TEMA 3. (35 puntos) Con los mismos datos de las matrices T y D del problema anterior, se decide resolver el sistema mediante el método de Gauss-Jordan, para lo cual la ecuación inicial X = TX + D se la reescribe en la siguiente forma:

(IT)X = D

en donde I es la matriz identidad.

a) Obtenga la solución transformando la matriz de coeficientes IT aumentada con el vector D.
Adjunte adicionalmente una matriz identidad que al ser transformada simultáneamente proporcione la inversa de la matriz de coeficientes

b) Calcule el número de condición de la matriz de coeficientes y comente al respecto. Use la norma de fila.

1Eva_IT2012_T2_MN Modelo Leontief

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM02188 Métodos Numéricos

TEMA 2. (35 puntos) La matriz insumo-producto propuesto por W. Leontief, es un modelo muy importante en Economía.

En ésta matriz se describe la producción de los diferentes sectores económicos y la demanda interna para satisfacer a estos mismos sectores, expresada como una fracción de su producción.

Ejemplo: Suponga que hay tres sectores
A: agricultura,
M: manufactura
S: servicios
y su demanda interna es:

Matriz T Producción
A M S
Demanda A 0.40 0.03 0.02
Interna M 0.06 0.37 0.10
S 0.12 0.15 0.19

Sea T el nombre de esta matriz.

Para los datos propuestos, en la primera columna de la matriz T, el sector A requiere 0.4 de su propia producción, 0.06 del sector M, y 0.12 del sector S, etc.

Sea D el vector de demanda externa de cada sector, y X el vector de la producción total de cada sector, requerida para satisfacer las demandas interna y externa:

D = \begin{pmatrix} 80\\ 140\\200 \end{pmatrix} X = \begin{pmatrix} x_1 \\ x_2\\x3 \end{pmatrix}

en donde x1, x2, x3 representan la producción total de cada sector.

Entonces la ecuación X = TX + D proporciona la producción total X para satisfacer las demandas externa e interna.

a) Formule un método iterativo en notación vectorial para usar la ecuación anterior. Indique cual es el nombre de la matriz T. Analice esta matriz y determine si el método iterativo es convergente.

b) Comience con un vector inicial X = [200, 200, 200]T realice las iteraciones necesarias hasta que la norma de la diferencia entre dos vectores consecutivos sea menor a 1.

Use la norma de fila.


Referencia: Modelo Input-Output. https://es.wikipedia.org/wiki/Modelo_Input-Output, https://es.wikipedia.org/wiki/Wassily_Leontief

T = np.array([[0.40, 0.03, 0.02],
              [0.06, 0.37, 0.10],
              [0.12, 0.15, 0.19]])

D = np.array([80.0, 140.0, 200.0],dtype=float)

Xa = np.array([200.0,200.0,200.0])

1Eva_IT2012_T1_MN Tasa de interés

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Una empresa compra una máquina en P=20000 dólares pagando A=5000 dólares cada año durante los próximos n=5 años.

La siguiente fórmula relaciona los valores de P, A, n y el interés anual x que la empresa debe pagar:

A = P \frac{x(1+x)^n}{(1+x)^n -1}

Determine la tasa de interés anual x que la empresa ha contratado.

a) Localice un intervalo que contenga a la raíz, para aplicar el método de la bisección

b) Calcule la raíz con una precisión de 0.01. Muestre los valores intermedios


Referencias:

La venta de tractores se mantiene. El comercio 24-Oct-2009. https://www.elcomercio.com/actualidad/venta-tractores-mantiene.html

1Eva_IT2012_T3 Interpolar con Lagrange

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM00158

Tema 3. (20 puntos) Se conocen los valores de una función en los siguientes puntos

f(1) = 0.75
f(1.5) = 1.34375
f(2) = 2.5
f(2.25) = 3.34765625
f(2.5) = 4.40625
f(3) = 7.25

Aproximar con el método de Lagrange, p3(x)


xi = [1, 1.5, 2, 2.25, 2.5, 3]
fi = [0.75, 1.34375, 2.5, 3.34765625, 4.40625, 7.25]

1Eva_IT2012_T2 Resolver sistema ecuaciones

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM00158

Tema 2. (20%) Dado el siguiente sistema:

\begin{cases}2x_1+2x_2-x_3+x_4=4\\4x_1+3x_2-x_3+2x_4=6\\8x_1+5x_2-3x_3+4x_4=12\\3x_1+ 3x_2-2x_3+2x_4=6\end{cases}

a) Resolver el sistema con un método directo

b) ¿Es posible resolver este sistema con el método iterativo de Jacobi?
Si su respuesta es afirmativa, resuélvalo con una tolerancia de 10-2, con X(0)=0
Si su respuesta es negativa, justifique su conclusión.


A = np.array([[2,2,-1,1],
              [4,3,-1,2],
              [8,5,-3,4],
              [3,3,-2,2]])
B = np.array([[4.0],
              [6],
              [12],
              [6]])
tolera = 0.01

1Eva_IT2012_T1 Cercanía de ln(x) a punto de origen

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM00158

Tema 1. (30 puntos). Determine de ser posible, los puntos de la curva

y=ln(x)

para x>0, más cercanos al origen de coordenadas.

a) Plantee la ecuación que permita resolver matemáticamente el problema.

b) Determine de ser posible un intervalo de la solución a la ecuación planteada en el literal anterior.

c) Aproxime la solución numérica de la ecuación planteada, empleando el método de Newton-Raphson con tolerancia de 10−6. Mostrar la tabla de resultados respectiva.

d) Escriba las coordenadas del punto encontrado: (x,y)

1Eva_IIT2011_T3_MN Producir un producto adicional

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM02188 Métodos Numéricos

Tema 3. En el problema anterior, la empresa ha decidido fabricar un producto adicional D con la siguiente composición y con la misma cantidad de insumos disponibles semanales.

Sea t la cantidad del producto D que se producirá semanalmente (t≥0)

Insumo1 Insumo2 Insumo3
Producto D  3 2  2

a) encuentre el conjunto solución para x, y ,z, en términos de la variable independiente t

b) Encuentre el rango de producción posible del producto D, y con éste rango encuentre el rango de producción posible para los otros tres productos.

1Eva_IIT2011_T2_MN Insumos por semana

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM02188 Métodos Numéricos

Tema 2. insumos
Una empresa produce semanalmente 3 tipos de productos, los insumos que requiere cada unidad producida se indican en la siguiente tabla:

Insumo1 Insumo2 Insumo3
Producto A 2 3 5
Producto B 5 2 7
Producto C 2 1 4

La cantidad de insumos que debe utilizarse exactamente cada semana es:

Insumo1 Insumo2 Insumo3
200 150 400

Sean x, y, z, la cantidad de productos A,B,C respectivamente, producida semanalmente (x≥0, y≥0, z≥0)

a) Plantee un sistema de ecuaciones

b) Utilice el método de eliminación de Gauss y encuentre la solución.

c) Incremente en 0.1 el primer coeficiente de la matriz. Resuelva nuevamente el sistema y comente acerca del cambio en la solución respecto al cambio en la matriz de coeficientes.

1Eva_IIT2011_T1_MN Función de probabilidad

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM02188 Métodos Numéricos

Tema 1. Para que f(x) sea una función de probabilidad, se tiene que cumplir que su integral en el dominio de x debe tener un valor igual a 1.

Encuentre el valor de b para que la función

f(x) = 2 x^2+x

sea una función de probabilidad en el dominio [0,b].

Use la fórmula de Newton en la ecuación no lineal resultante. error tolerado=0.0001

1Eva_IIT2011_T3 Polinomio Lagrange

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM00158

Tema 3. Sea f \in C^{4}[0,1] , tal que

f(0.50) = 1.648
f(0.65) = 1.915
f(0.80) = 2.225
f(0.95) = 2.5857

Usando el polinomio interpolante de Lagrange, aproxime:

f(0.76)
f(0.87)


datos = [[0.50, 1.648],
         [0.65, 1.915],
         [0.80, 2.225],
         [0.95, 2.5857]]