3Eva_2021PAOI_T4 Integral con Cuadratura Gaussiana

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 4 (30 puntos) Aproximar el siguiente integral usando Cuadratura Gaussiana

\int_0^{\pi/4} x^2 \sin (x) \delta x

a) Usado dos segmentos o tramos, y para dos puntos, n=2

b) compare sus resultados con n=3

c) Calcule error entre resultados

Referencia: Burden 8th Edition. Ejercicios 4.7 d.

Rúbrica: Planteo del ejercicio (5 puntos), literal a, con expresiones y valores completos (10 puntos), literal b, con n=3 (10 puntos). literal c (5 puntos).

3Eva_2021PAOI_T3 Respuesta a entrada cero en un sistema LTIC

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 2 (30 puntos) Para un circuito eléctrico mostrado en la figura, conocido también como un sistema LTIC (lineal contínuo invariante en el tiempo), la “respuesta a entrada cero” corresponde al comportamiento de la corriente y(t) cuando no se aplica una señal de entrada x(t) = 0.

La expresión que describe la relación de entrada x(t) y salida y(t) que permite analizar el sistema en un intervalo de tiempo es:

\frac{\delta^2 y(t)}{\delta t^2}+3 \frac{\delta y(t)}{ \delta t}+2 y(t) = \frac{\delta x(t)}{\delta t} =0

Los componentes inductores y capacitores almacenan energía representada como condiciones iniciales y0(t) =0 , y’0(t) =-5

Considere como de interés el intervalo de tiempo entre [0,6] con al menos 60 tramos.

a) Realice el planteamiento para encontrar y(t) con las condiciones dadas, usando el método de Runge-Kutta de 2do orden

b) Desarrolle tres iteraciones con expresiones y valores, mostrando el uso del método anterior.

Referencia: Lathi B.P and Green R.A.(2018). Capítulo 2.1 p151.Linear Systems and Signals Third Edition. Oxford University Press.
http://blog.espol.edu.ec/telg1001/ltic-respuesta-entrada-cero-con-python/

Rúbrica: Planteo de ejercicio para el método requerido (5 puntos), tamaño de paso (5 puntos), iteraciones completas (15 puntos), desarrollo algorítmico, gráfica (5 puntos)

3Eva_2021PAOI_T2 Tensiones mínimas en cables por carga variable

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 2 (20 puntos) Continuando con el ejercicio del tema anterior de la carga con dos cables, se requiere encontrar:

a) El valor de θ para el cual la tensión en los dos cables es la mínima posible. Use un algoritmo para encontrar las raíces, es decir TCA=TCB

b) Desarrolle al menos 2 iteraciones

c) El valor correspondiente de la tensión.

Nota: Plantear la solución del problema anterior como una función en Python, para usarla como parte del desarrollo de éste tema

Rúbrica: Planteamiento completo del ejercicio (5 puntos), desarrollo de expresiones  (10 puntos), literal b (5 puntos)

3Eva_2021PAOI_T1 Tensiones en cables por carga variable

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 1 (20 puntos) Una carga P está sostenida por dos cables como se muestra en la figura.

Las ecuaciones de equilibrio del sistema corresponden a:

\sum^n{F_x = 0} -T_{CA} \cos (\alpha) + T_{CB} \cos (\beta) + P \sin (\theta) = 0 \sum^n{F_y = 0} T_{CA} \sin (\alpha) + T_{CB} \sin (\beta) - P \cos (\theta) = 0

Se requiere determinar la tensión en cada cable para cualquiera de los valores de P y θ que se encuentran desde θ1=β-90° hasta θ2=90°- α , con incrementos dados Δθ.

Usando un algoritmo numérico con método directo para solución de un sistema de ecuaciones, determine para los siguientes conjuntos de  números: La tensión en cada cable para los valores de θ  que van de θ1 a θ2.

α = 35°, β = 75°, P = 400 lb, Δθ = 5°
α = 50°, β = 30°, P = 600 lb, Δθ = 5°
α = 40°, β = 60°, P = 2500 lb, Δθ = 5°

Nota: Observe que los valores de ángulos están presentados en grados sexagesimales

Referencia: Ferdinand P. Beer, E. Johnston, E. Eisenberg. 9va Ed. Cap2. Ejercicio 2.C4 Mecánica vectorial para ingenieros – Estática

Rúbrica: Planteamiento del problema (5 puntos), desarrollo del método directo (10 puntos), algoritmo (5 puntos)

3Eva_2020PAOII_T3 Deflexiones de una placa

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 3. (40 puntos) Una placa cuadrada, apoyada simplemente en sus extremos está sujeta a un carga por unidad de área q.


La deflexión en la dimensión z de determina resolviendo la EDP elíptica siguiente:

\frac{\partial^4 z}{\partial x^4} + 2\frac{\partial^4 z}{\partial x^2 \partial y^2} +\frac{\partial^4 z}{\partial y^4} =\frac{q}{D}

sujeta a condiciones de frontera en los extremos, donde la deflexión y la pendiente normal a la frontera son cero.

D = \frac{E \Delta x^3}{12(1-\sigma ^2)}

El parámetro D es la rigidez de flexión, donde E=módulo de elasticidad, Δz=espesor de la placa, σ=razón de Poisson.

Para simplificar, se define la variable u como sigue:


u = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}

Permitiendo volver a expresar la ecuación primera como:

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{q}{D}

Con lo que el problema se reduce a resolver de manera sucesiva las dos ecuaciones de Poisson.


Primero la ecuación respecto a u sujeta a la condición de frontera u = 0 en los extremos, después los resultados se emplean junto con la ecuación respecto a z sujeta a la condición de que z = 0 en los extremos.
Considere una placa de 2 metros de longitud en sus extremos, q= 33.6 k N/m2, σ =0.3, Δz = 0.01 m, E = 2×1011 Pa.

a) Plantee y desarrolle el ejercicio en papel para u(x,y) para al menos 3 puntos en la malla.
Utilice Δx = Δy = 0.5 para las iteraciones.

b) Desarrolle un algoritmo para determinar las deflexiones de una placa cuadrada sujeta a una carga constante por unidad de área resolviendo de manera sucesiva las dos ecuaciones.

Rúbrica: gráfica de malla (5 puntos), desarrollo de expresiones, agrupar constantes, y simplificación (10 puntos), iteraciones para 3 puntos (10 puntos), Revisión de errores (5 puntos). literal b (10 puntos)

Referencia: Deflexiones de una placa. Chapra 32.2 p938, pdf962

3Eva_2020PAOII_T2 EDO – Concentración de solución en tres tanques

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 2. (30 puntos) Tres tanques perfectamente aislados, completamente llenos con una solución cuya concentración es Ci (0) g/L.


Los tanques están interconectados en serie de tal forma que de añadir solución al primero, se transfiere la misma cantidad por la conexión al segundo y al tercero del cual rebosa hacia afuera del sistema.

El tercer tanque tiene una salida por rebose que mantiene constante el volumen V en cada tanque.

Desde un tiempo t0 = 0, al primer tanque se le añade una solución que tiene una concentración 50 g/L, a razón de 300 L/min.

Considere Ci (0) = 30 g/L y el volumen de cada tanque de 1000 L.
En cada tanque entre lo que recibe y se transfiere al siguiente tanque se obtienen las siguientes ecuaciones:

\frac{dC_1}{dt} = \frac{300}{1000}(50) - 0.3 C_1 \frac{dC_2}{dt} = 0.3C_1- 0.3 C_2 \frac{dC_3}{dt} = 0.3C_2- 0.3 C_3

Determine la concentración en cada tanque durante los 3 primeros minutos de iniciar el experimento usando un método de Runge-Kutta de 2do Orden. (tres iteraciones, estime cota del error)

Rúbrica: Planteo del sistema de ecuaciones en el método (10 puntos), iteraciones (15 puntos), estimar errores (5 puntos.

Referencia: GIE -FRSN-UTN. https://www.frsn.utn.edu.ar/gie/an/mnedo/ejercicios%20propuestos.pdf


3Eva_2020PAOII_T1 Área de sección transversal en buque

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 1. (30 puntos) Al reiniciar las actividades de construcción de un buque
luego de la cuarentena del año 2020, se requiere determinar el área transversal de la sección a ser cerrada completamente y que se muestra en la figura.

Para estimar el área transversal del compartimento se tomaron las siguientes medidas cada 2 metros hacia arriba desde la línea central vertical (mostrada en la gráfica):

en metros Longitud desde Centro
Altura Izquierda Derecha
12 -17.00 17.00
10 -16.00 16.00
8 -15.65 15.65
6 -15.60 15.60
4 -15.50 15.50
2 -15.00 15.00
0   -6.00  6.00

Usando un método numérico compuesto estime el área transversal de la sección del barco y la cota de error del ejercicio. Desarrolle el ejercicio mostrando el método seleccionado, las expresiones en la ecuación con los valores usados y el error total.

Rúbrica: Selección del métodos compuestos (5 puntos), expresiones de áreas (10 puntos), cota de errores (10 puntos), área total (5 puntos)

Referencias: Órdenes de construcción de transporte marítimo disminuyo en abril. 2020-05-10. https://www.worldenergytrade.com/logistica/transporte/ordenes-de-construccion-de-transporte-maritimo-disminuyo-abril


 

3Eva_2020PAOI_T2 Modelo epidemiológico no letal

3ra Evaluación 2020-2021 PAO I. 22/Septiembre/2020

Tema 2. (35 puntos) En 1927, Kermack y McKendrick propusieron un modelo epidemiológico no letal simplificado que divide a la población total en estados de S=Susceptible, I=Infectado, R= Recuperado.

Las personas cambian de estado en un solo sentido S-I-R siguiendo la tasa de infección β y el periodo infeccioso promedio 1/γ; los recuperados adquieren inmunidad. Este modelo permite observar que pequeños aumentos de la tasa de contagio pueden dar lugar a grandes epidemias.

Susceptible Infectado Recuperado
Relación \frac{dS}{dt} = -\beta SI \frac{dI}{dt} = \beta SI - \gamma I \frac{dR}{dt} = \gamma I
Población (t0=0) S(t0)= 1 I(t0) = 0,001 R(t0) = 0

Los valores de población se encuentran en miles, β = 1.4, γ = 1/4.
Suponga que el tiempo se mide en días, h = 1.

a. Plantear la solución del sistema de EDO usando Runge-Kutta de 2do Orden
b. Desarrolle el ejercicio con al menos 3 iteraciones en el tiempo
c. Estimar el error del método aplicado

Rúbrica: conoce la fórmula de RK2 (5 puntos), plantea la fórmula de RK2 al sistema (5 puntos) literal b (20 puntos), literal c (5 puntos).

Referencia: Modelo SIR https://es.wikipedia.org/wiki/Modelo_SIR. Modelaje matemático de epidemias https://es.wikipedia.org/wiki/Modelaje_matem%C3%A1tico_de_epidemias

3Eva_2020PAOI_T1 Distancia mínima en trayectoria

3ra Evaluación 2020-2021 PAO I. 22/Septiembre/2020

Tema 1. (30 puntos) Calcule el punto de la curva en el plano x-y definida por la función

y = e^{-x} , x ∈ R

que se encuentra más cercano al punto(1, 1).

a. Encuentre un intervalo apropiado para aproximar este valor mediante el método de Newton.

b. Usando este método, elabore una tabla que contenga las columnas de la tabla mostrada:

i xi f(xi) Ei
0
1
2
3

donde f(x) = 0 define el problema a resolver y

Ei = |xi+1 − xi|, i≥0.

Use como criterio de parada Ei ≤ 10−7.
Para los cálculos utilice todos los decimales que muestra la calculadora.

Rúbrica: literal a (5 puntos), planteamiento del método (5 puntos). iteraciones (15 puntos), cálculo de errores (5 puntos)

Referencia: NASA: Cinco asteroides se aproximan a la Tierra; los dos primeros este fin de semana. 11 de Julio, 2020. https://www.eluniverso.com/noticias/2020/07/11/nota/7901811/nasa-asteroides-planeta-tierra

Un asteroide recién descubierto pasará este jueves muy cerca de la Tierra. 23 de septiembre, 2020. https://www.eluniverso.com/noticias/2020/09/23/nota/7987777/asteroide-recien-descubierto-pasara-este-jueves-muy-cerca-tierra

3Eva_2020PAOI_T3 EDP Parabólica

3ra Evaluación 2020-2021 PAO I. 22/Septiembre/2020

Tema 3. (35 puntos) Desarrolle con el método implícito para aproximar la solución de la EDP Parabólica

\frac{du}{dt} - c^2 \frac{d^2 u}{dx^2} = g(x)
u(x,0) = f(x) u(0,t) = 0 u(1,t) = 0
f(x) = \begin{cases} 5x , & 0 \le x \le 0.5 \\ 5(1-x) , & 0.5 \lt x \le 1\end{cases} g(x) = 2 , 0 \le x \le 1

Considere para h=0.25, k=0.05, c=1

a. Grafique la malla
b. Escriba las ecuaciones para las derivadas
c. Plantee las ecuaciones
d. Resuelva para tres pasos
e. Estime el error (solo plantear)

Rúbrica: literal a (5 puntos), literal b (5puntos), literal c (10 puntos), literal d (10 puntos), literal e (5 puntos)