3Eva_2022PAOII_T4 Recesión económica, PIB y diferenciación numérica

3ra Evaluación 2022-2023 PAO II. 7/febrero/2023

Tema 4. (20 puntos) Las recesiones económicas se caracterizan por presentar una disminución del consumo, de la inversión y de la producción de bienes y servicios. Lo cual provoca, a su vez, que se despidan trabajadores y por tanto, aumente el desempleo. La recesión es también conocida como el periodo de «vacas flacas».

PIBEcuador2022_crecimiento01

La opinión emitida por Julius Shiskin en un artículo publicado el 28 de agosto de 1975 en el diario New York Times en torno a dos trimestres consecutivos de caída del PIB como plazo definitorio para el considerar una recesión.

a. Plantee y describa los métodos de diferenciación numérica que usen dos y tres puntos para primera derivada.

b. Realice tres iteraciones con los métodos numéricos seleccionados. Describa el tamaño de paso usado en cada método.

c. Compare los resultados del literal anterior y escriba sus observaciones respecto a las cotas de error.

d. Determine los periodos de “recesión económica” para los datos proporcionados entre el año 2012 y 20122. Liste acorde a lo definido por J. Shiskin. Use los algoritmos y adjunte los archivos usados (py,txt,png).

trimestres = ['2012.I', '2012.II', '2012.III', '2012.IV',
 '2013.I', '2013.II', '2013.III', '2013.IV', '2014.I',
 '2014.II', '2014.III', '2014.IV', '2015.I', '2015.II',
 '2015.III', '2015.IV', '2016.I', '2016.II', '2016.III',
 '2016.IV', '2017.I', '2017.II', '2017.III', '2017.IV',
 '2018.I', '2018.II', '2018.III', '2018.IV', '2019.I',
 '2019.II', '2019.III', '2019.IV', '2020.I', '2020.II',
 '2020.III', '2020.IV', '2021.I', '2021.II', '2021.III',
 '2021.IV', '2022.I', '2022.II', '2022.III']

PIB trimestral = [21.622937, 21.908844, 22.106937,
 22.285826, 23.019786, 23.441324, 24.238576, 24.429973,
 24.829431, 25.540887, 25.9404, 25.415613, 25.052739,
 25.086195, 24.779738, 24.371709, 24.913573, 24.926186,
 24.910741, 25.187196, 26.000261, 25.99355, 25.960907,
 26.341144, 26.510612, 26.761827, 27.078404, 27.211165,
 26.914897, 27.058331, 27.054758, 27.080023, 26.314576,
 23.110752, 24.64388, 25.221916, 25.412756, 26.20682,
 26.828611, 27.717679, 28.372038, 28.74092, 29.334581]

Rúbrica: literal a (3 puntos), literal b (9 puntos). literal c(3 puntos) literal d (5 puntos)

Referencia: Recesión económica. Wikipedia. https://es.wikipedia.org/wiki/Recesi%C3%B3n
Recesión económica. economipedia. https://economipedia.com/definiciones/recesion-economica.html

Boletín de Cuentas Nacionales Trimestrales No. 121, valores constantes USD 2007 y corrientes, período : 2000.I – 2022.IIIIT  Banco Central del Ecuador (2022) https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Catalogo/CuentasNacionales/Indices/c121122022.htm

3Eva_2022PAOII_T3 EDO cabezal lector en disco duro

3ra Evaluación 2022-2023 PAO II. 7/febrero/2023

Tema 3. (35 puntos) El objetivo de un sistema de Disco duro es posicionar con precisión el dispositivo de lectura en la pista buscada y moverse entre una pista y otra. disco duro lectora01

Se requiere identificar el plato de disco, el sensor y el controlador.

El disco duro usa un motor DC de imán permanente para posicionar el brazo lector con el sensor en un extremo. Un resorte metálico se usa para permitir que el cabezal flote sobe el disco a una distancia menor a 100nm.

El cabezal toma lectura del flujo magnético y da una señal al amplificador.

Suponiendo que dispone del dispositivo de lectura de precisión, una aproximación del modelo de control del motor con Ka=40, se supone que el brazo es rígido con parámetros como los mostrados, el sistema se puede aproximar como un sistema de orden 2 en el dominio s o en su forma de ecuación diferencial.

Y(s)(s^2+20s+5K_a )=X(s)5K_a \frac{\delta^2}{\delta t^2 } y(t) + 20 \frac{\delta}{\delta t} y(t) + 5 K_a y(t) = x(t) 5 K_a

y(0) = 0         y’(0) = 0

x(t) = \begin{cases} 0 & t\lt 0 \\ 1 & t≥0 \end{cases}

Encuentre la respuesta del sistema y(t) ante una señal de entrada x(t), con las condiciones iniciales dadas.

a. Plantee la solución usando el método de Runge-Kutta de 2do orden.
b. Desarrolle tres iteraciones para Δt = 0.01
c. Estime el error del modelo usado
d. Realice la gráfica para y(t) para el intervalo de [0,1] segundos. Adjunte los archivos de los algoritmos.py usados para los cálculos, los resultados.txt y gráfica.png

Rúbrica:  literal a (5 puntos), literal b (15 puntos), literal c (5 puntos), literal d y adjuntos (10 puntos)

Referencia: Bishop R. & Dorf R. (2017) 13th Edition. 2.10 sequential Design example: Disk Drive read system. p122.
How do Hard Disk Drives Work? Branch Education. 22 diciembre 2022.

https://youtu.be/wtdnatmVdIg

3Eva_2022PAOII_T2 Globo meteorológico espía distancia mas cercana

3ra Evaluación 2022-2023 PAO II. 7/febrero/2023

Tema 2. (20 puntos) Se requiere hacer el seguimiento a la trayectoria del globo aerostático del tema anterior, para descartar las sospechas de espionaje.

Area51 Simpson LisaDadas las coordenadas de un lugar considerado como de seguridad nacional p1(x,y)=[25,50] , se requiere revisar la distancia más cercana de la trayectoria y(x) del globo al punto de “interés”.

Se compararía la distancia mínima con el alcance las cámaras y sensores encontrados en los escombros del globo derribado.

Usando la trayectoria obtenida como resultado del tema anterior, se requiere:

a. Plantee el ejercicio describiendo los criterios usados, el método numérico y una tolerancia a usar.

b. Desarrolle el método para encontrar la raíz de la ecuación planteada, con al menos tres iteraciones.

c. Estime la cota de error, compare con la tolerancia descrita en el literal a.

Nota: Si el resultado del tema 1 no es satisfactorio, desarrolle el tema con y(x) = 70sin(0.1πx+0.5)

Rúbrica: literal a (5 puntos), literal b (10 puntos), literal c (5 puntos)

3Eva_2022PAOII_T1 Globo meteorológico espía derribado

3ra Evaluación 2022-2023 PAO II. 7/febrero/2023

Tema 1. (25 puntos) En enero del 2023 se detectó un globo aerostático globo aerostatico 01supuestamente espía sobre el territorio soberano de un país, que sobrevoló a 18 Km de altura en la estratosfera y que «no representaba ningún riesgo militar o físico los ciudadanos en la superficie».

Otro país vecino al mismo tiempo hacía seguimiento a otro «posible segundo incidente», se anunció en los medios de comunicación. En el primer caso se decidió no destruir el aparato por el temor de que la caída de sus escombros podría haber sido peligrosa para la superficie y no representaba el globo un peligro inmediato.

Como seguimiento al caso, se requiere describir la trayectoria del globo mediante ecuaciones a partir de las coordenadas de avistamiento reportadas por civiles.

ti    = [11, 12, 14, 15, 17, 19]
x(ti) = [15, 18, 25, 27, 31, 40]
y(ti) = [45, 55, 65, 58, 55, 40]

a. Plantear el ejercicio, describiendo los criterios, método numérico, segmentos a usar en las ecuaciones para realizar la interpolación polinómica de Lagrange.

minimizando oscilaciones del polinomio que puedan resultar en interpretaciones erradas.

b. Realizar el desarrollo analítico de las ecuaciones planteadas y presente el  polinomio simplificado.

c. Validar los resultados usando el algoritmo, adjunte los archivos.py, resultados.txt, gráfica.png

Rúbrica: literal a (5 puntos), literal b (10 puntos), literal c (10 puntos)

Referencias: Detectan un globo aerostático espía sobre territorio. Rtve.es/Agencias 03/febrero/2023. https://www.rtve.es/noticias/20230203/eeuu-detecta-globo-aerostatico-espia-china-sobre-su-territorio/2420646.shtml

Derriban globo «espía» sobre la costa del Atlántico. DW 04/febrero/2023. https://www.dw.com/es/eeuu-derriba-globo-esp%C3%ADa-chino-sobre-la-costa-del-atl%C3%A1ntico/a-64613403

EE.UU. derriba el presunto globo espía de China. CNN en Español. 4 feb 2023.

Globos chinos en América desatan preocupación mundial. DW Español
DW Español. 10 feb 2023

2Eva_2022PAOII_T3 EDP Parabólica con coseno 3/4π

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 3. (35 puntos) Aproxime la solución a la siguiente ecuación diferencial parcial parabólica

\frac{\partial^2 u}{\partial x^2} = b \frac{\partial u}{\partial t}

2Eva2022PAOII_T3 EDP ParabolicaCon las siguientes condiciones de frontera:
u(0,t)=1
u(1,t)=0

Y las condiciones iniciales
u(x,0) = \cos \Big( \frac{3π}{2}x\Big)

Utilice diferencias finitas centradas para x, para t hacia adelante.

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j
b. Realice la gráfica de malla,
c. desarrolle y obtenga el modelo discreto para u(xi,tj)

Suponga que b = 2, Aproxime la solución con Δx = 0.2, Δt = Δx/100.

d. Realice al menos tres iteraciones en el eje tiempo.
e. Estime el error de u(xi,tj), y presente observaciones sobre la convergencia del método.

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (5 puntos), literal d (15 puntos), literal e (5 puntos).

Referencia: Chapra & R. Canale (2010). Métodos Numéricos para Ingenieros. Ejercicio 30.15 p904,
Solving the heat equation | DE3. 3Blue1Brown 16 Junio 2019.

 

2Eva_2022PAOII_T2 EDO – población de protestantes en una sociedad

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 1. (35 puntos) protestantismoEn el libro titulado “Looking at History Through Mathematics”, Rashevsky propone un modelo que se puede relacionar con el “protestantismo” en el siglo XVI como una reacción y denuncia de abusos impuestos sobre la sociedad de la época.

En un modelo de Rashevsky modificado con la ecuación logística de Verhulst, la población x(t) de individuos en la sociedad para cada año t, con tasas de natalidad b=0.02 y mortalidad d=0.015, cambia según la ecuación:

\frac{\delta}{\delta t}x(t) = b x(t) - d (x(t))^2 x(0)=1

La cantidad de individuos “protestantes” y(t) en la población se incrementa según la ecuación diferencial compuesta de dos términos.

\frac{\delta}{\delta t}y(t) = b y(t) - d (y(t))^2 +r b (x(t)-y(t)) y(0)=0.01

El primer término supone que todas familias de padre y madre “protestantes” tienen hijos que también se identifican como tales.

El segundo término supone que una porción r = 0.1 de jóvenes descendientes de los “conformistas” al meditar sobre la situación actual, los hechos y los argumentos de protesta se convierten a “protestantes”.

a.       Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b.       Desarrolle tres iteraciones para x(t), y(t) con tamaño de paso h=0.5.

c.       Usando el algoritmo, aproxime la solución entre t=0 a t=200 años, adjunte sus resultados en la evaluación.

d.       Realice una observación sobre el crecimiento de población y(t) a lo largo del tiempo.

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c (10 puntos), literal d (5 puntos)

Referencia: Burden 5.2 Ejercicio 17 p276, Rashevsky, MIT 1968. pp102-110, Protestantismo https://es.wikipedia.org/wiki/Protestantismo. 3Eva_IIT2014_T2 Crecimiento demográfico. http://blog.espol.edu.ec/analisisnumerico/3eva_iit2014_t2-crecimiento-demografico/

La Reforma protestante y Lutero. Academia Play. 27 agosto 2019

 

2Eva_2022PAOII_T1 Altura de cohete en 30 segundos

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 1. (30 puntos) La velocidad hacia arriba de un cohete se calcula con la fórmula:

v = u \ln\Big(\frac{m_0}{m_0-qt}\Big) - gt

Donde:https://www.debate.com.mx/Las-increibles-imagenes-del-lanzamiento-del-cohete-mas-potente-del-mundo-l201802060004.html
v   = velocidad hacia arriba,
u   = 1800 m/s, velocidad a que se expele el combustible en relación con el cohete,
m0 = 160 000 kg, masa inicial del cohete en el tiempo t = 0,
q    = 2 500 kg/s,  tasa de consumo de combustible y
g    = 9.8 m/s2, aceleración de la gravedad

Para determinar la altura alcanzada por el cohete en un vuelo de 30 segundos desarrolle la parte analítica con los siguientes métodos y compare los resultados.

a. Utilice la regla de Simpson, en el planteamiento incluya la cantidad de tramos o segmentos a usar

b. Use el método de cuadratura de Gauss para la misma cantidad de segmentos que el literal anterior

c. Compare y comente los resultados, sobre los errores entre los métodos.

Rúbrica: Planteamiento de tramos (5 puntos), integral con Simpson (10 puntos), cuadratura de Gauss (10 puntos), literal c (5 puntos).

Referencia: Chapra ejercicio 24.46 p701. NASA y SpaceX realizan con éxito el despegue del primer vuelo de EE. UU. hacia la Estación Espacial Internacional en nueve años. EFE 30 mayo 2020 https://youtu.be/npcgpQUKAbg

 

 

1Eva_2022PAOII_T3 Trayectoria de dron con polinomios

1ra Evaluación 2022-2023 PAO II. 22/Noviembre/2022

Tema 3. (30 puntos) La simulación de drones consiste en modelar el comportamiento de un dron o vehículo aéreo no tripulado (VANT) y evaluar su rendimiento en un entorno virtual.

La simulación es un paso importante en el desarrollo de drones y permite comprender la dinámica de los drones antes de fabricar los prototipos.

Para un ejemplo simplificado en 2D, se requiere obtener una trayectoria simulada por polinomios para el dron pase por las marcas de tiempo y su coordenada mostrada.

ti = [0, 1, 2, 3, 4]
xti = [2, 1, 3, 4, 2]
yti = [0, 1, 5, 1, 0]

a. Describa el planteamiento del ejercicio, justificando el grado del polinomio seleccionado.

b. Realice el desarrollo analítico para un eje de posición en el tiempo usando el método de interpolación de Lagrange.

c. Desarrolle con el algoritmo otro eje del literal b y muestre sus resultados.

Rúbrica: literal a (5 puntos), literal b (15 puntos), algoritmo y resultados.txt (5 puntos), gráfica (5 puntos)

Referencias: [1] Deep Drone Acrobatics (RSS 2020). UZH Robotics and Perception Group. 11 de junio 2020.

[2] Los nuevos robots y drones agrícolas simplificarán el trabajo en el campo. Euronews. 2 Septiembre 2019.

1Eva_2022PAOII_T2 Admisión universitaria – cupos por recursos

1ra Evaluación 2022-2023 PAO II. 22/Noviembre/2022

Tema 2. (35 puntos) Las instituciones de educación superior han comenzado a implementar un nuevo proceso para el registro de aspirantes a las universidades desde el 2023 [1].

Se rendirán dos exámenes: aptitudes, para evaluar el razonamiento lógico; y de conocimientos sobre materias base de la carrera a la que aspira.

Se requiere determinar la distribución de cupos en base a los costos relativos al promedio por estudiante para docencia, infraestructura y servicios mostrados en la tabla.

Costo referencial /carrera Mecatrónica Computación Civil Matemáticas
Docencia 1.5 0.9 0.6 0.7
Infraestructura 0.8 1.4 0.4 0.5
Servicios 0.45 0.55 1.1 0.5

Nota: Los valores de la tabla se establecen para el ejercicio y no corresponden a una referencia publicada.

En carreras como matemáticas de baja demanda, se establece el cupo de 10, mientras que para las demás depende de los otros parámetros referenciales. El total de recursos relativos al promedio por estudiante disponibles son docencia 271, infraestructura 250 y servicios 230.

a. Realice el planteamiento de un sistema de ecuaciones que permita determinar la cantidad máxima de cupos de estudiantes por carrera que podrían ser admitidos con los recursos disponibles para el siguiente año.

b. Seleccione la variable libre considerando lo descrito para el caso dado y presente el sistema de ecuaciones en forma de matriz aumentada.

c. Determine la capacidad usando un método Iterativo con una tolerancia de 10-2. Realice tres iteraciones completas y revise la convergencia del método. Justifique la selección de un vector inicial para X0.

Realice el desarrollo con el algoritmo y adjunte sus respuestas. De ser necesario comente sobre los valores encontrados.

Rúbrica: literal a (5 puntos), literal b (5 puntos), pivoteo por filas(5 puntos), iteraciones (10 puntos), análisis de convergencia (5 puntos), literal d (5 puntos).


Referencias: [1] Espol iniciará proceso de admisión este 21 de noviembre. Eluniverso.com – 19 de noviembre 2022. https://www.eluniverso.com/guayaquil/comunidad/espol-iniciara-proceso-de-admision-este-21-de-noviembre-nota/

[2] Durante la pandemia, Espol registró un aumento de estudiantes matriculados. Estas fueron las carreras con más demanda. Eluniverso.com – 9 de febrero 2022. https://www.eluniverso.com/guayaquil/comunidad/durante-la-pandemia-la-espol-registro-un-aumento-de-estudiantes-matriculados-estas-fueron-las-carreras-con-mas-demanda-nota/

[3] El presupuesto del Estado sube para 18 universidades. Primicias.ec – 18 de noviembre 2022. https://www.primicias.ec/noticias/economia/presupuesto-universidades-proforma/

[4] Así son las carreras más y menos demandadas en Ecuador. Elcomercio.com 21 de octubre de 2022. https://www.elcomercio.com/tendencias/sociedad/carreras-mas-menos-demandadas-ecuador.html

1Eva_2022PAOII_T1 Esfera flotando en agua

1ra Evaluación 2022-2023 PAO II. 22/Noviembre/2022

Tema 1 (35 puntos) Según el principio de Arquímedes, la fuerza de flotación o empuje es igual al peso de el fluido desplazado por la porción sumergida de un objeto.  

Para la esfera de la figura, determine la altura h de la porción que se encuentra sobre el agua considerando las constantes con los valores mostrados.

ρesfera = 200 Kg/m3
ρagua    = 1000 kg/m3
r = 1 m
g =9.8 m/s2

Observe que la porción del volumen sobre el agua de la esfera puede ser determinado como la fórmula presentada.

Fempuje = ρagua Vsumergido g
Fpeso    = ρesfera Vesfera g

V_{sobreagua} = \frac{\pi h^2}{3}(3r-h)

Para el desarrollo del ejercicio use el método del punto fijo.

Rúbrica: Planteamiento (5 puntos), iteraciones con el error (15 puntos), análisis de la convergencia (10 puntos). observación de resultados (5 puntos).

Referencia:
[1] Ejercicio 5.19. p143 Steven C. Chapra. Numerical Methods 7th Edition.
[2] Fuerza de empuje y flotación. Ingenia UdeA. 29 Abril 2015

[3] Problema – Principio de Arquímedes y fuerza de empuje (Archimedes’ principle – problem). Problemas de Física.13 octubre 2019.