Señales Pares e Impares

Señales Pares

Una señal x(t) ó x[n] es par si se «refleja» en el eje vertical u ordenadas.

x(t) = x(-t) x[n] = x[-n]

La señal tiene los mismos valores para el lado positivo o negativo de |t|.

Es como si se aplicara el valor absoluto de t antes de hacerlo en la ecuación.

Señales Impares

Una señal x(t) ó x[n] es impar si se cumple que:

x(t) = -x(-t) x[n] = -x[-n]

Una señal impar debe ser necesariamente 0 en t=0 o n=0.

Ejemplos

Para ilustrar mejor el concepto se reutiliza los ejemplos anteriores de señales periódicas.

Se inicializa los parámetros para:

  • el periodo T de una señal
  • el número m de periodos que se observarán de cada lado del eje vertical
  • punto de inicio t0 para el eje horizontal
  • n muestras de la señal a observar
# Señales pares e impares
# propuesta: edelros@espol.edu.ec

import numpy as np
import matplotlib.pyplot as plt

# ingresar parámetros
T = 2*np.pi
m = 1 #periodos para la gráfica
t0 = -m*T #usa lado negativo de abscisas
n = 100

Ejemplo función par

Un señal par conocida es cos()

Para observar mejor, se marcará el área que genera la función dentro de un periodo centrado en el origen.

# PROCEDIMIENTO
# vector de tiempo
tn = -t0  # completa el reflejo positivo
dt = (tn-t0)/n
t = np.arange(t0,tn,dt)

# Señal
f = 1/T
w = 2*np.pi*f
senalpar = np.cos(w*t)

# marcar un periodo en [desde, hasta)
desde = -T/2
hasta = desde + T + dt
tperiodo = np.arange(desde,hasta,dt)
periodopar = np.cos(w*tperiodo)

Se marca un periodo comprendido en: [-T/2,T/2], sombreando alrededor de t=0

# SALIDA
# Gráficas
plt.figure(1)
plt.plot(t,senalpar)
plt.xlabel('t')
plt.ylabel('señal x[(t)]')
plt.grid(True)

# marcar un periodo
plt.title('Señal par')
plt.fill_between(tperiodo,0, periodopar,color='lightgreen')
plt.axvline(x=0, color='red')
plt.show()

Ejemplo función impar

En el ejemplo se usará una señal par como el sin()

Para observar mejor, se marcará el area que genera la función dentro de un periodo centrado en el origen.

Como el eje t ya fué generado en el ejercicio anterior, se continúa con la generación de la gráfica.

# señal
senalimpar = np.sin(w*t)

# marcar un periodo
periodoimpar = np.sin(w*tperiodo)

Se marca un periodo comprendido en: [-T/2,T/2], sombreando alrededor de t=0

# SALIDA
# Gráficas
plt.figure(2)
plt.plot(t,senalimpar)
plt.xlabel('t')
plt.ylabel('señal x[(t)]')
plt.grid(True)

# marcar un periodo
plt.title('Señal impar')
plt.fill_between(tperiodo,0, periodoimpar,color='lightblue')
plt.axvline(x=0, color='red')
plt.show()

Tarea

probar con otras funciones tales como:

  • t
  • |t|
  • t2
  • t3
  • |- et|

nota: el valor absoluto en python para t se escribe como abs(t), o usando numpy np.abs(t)

Referencia: Oppenheim 1.2.3 pdf/p41, Schaum 1.2.E pdf/p.14

Publicado por

Edison Del Rosario

edelros@espol.edu.ec / Profesor del FIEC/FCNM-ESPOL

2 comentarios sobre “Señales Pares e Impares”

  1. amigo, la señal impar debe ser de la forma x(t)=-x(-t) ya que sino, no estaría como un reflejo al origen, si nos vamos a una señal diferente a una senoidal nos daremos cuenta que debemos invertirla en ambos ejes!

Los comentarios están cerrados.