3Eva_IT2008_T2 Trazador cúbico

3ra Evaluación I Término 2008-2009. 16/Septiembre/2008. ICM00158

Tema 2. Dados los siguientes datos:

f(0) = 1, f\Big(\frac{\pi}{6}\Big) =1.5, f\Big(\frac{\pi}{3}\Big) =1.866 f\Big(\frac{\pi}{2}\Big) =2, f'(0)=1, f'\Big(\frac{\pi}{2}\Big) =0

Construir el trazador cúbico fijo:

a. Establecer el sistema de ecuaciones para obtener lso valores de c

b. Con los valores de c, determinar b y d.

c. Escribir los polinomios con sus respectivos intervalos.

3Eva_IT2008_T1 Runge-Kutta 4to orden dy/dx

3ra Evaluación I Término 2008-2009. 16/Septiembre/2008. ICM00158

Tema 1. Resolver la siguiente ecuación diferencial usando el método de Runge-Kutta de cuarto orden:

x\frac{\delta y}{\delta x} + xy = 1-y y(1) = 0

a. Escriba la función f(t,w) para la ecuación dada

b. Escriba el algoritmo para la i-ésima iteración con la función definida en el literal a.

c. Escriba la tabla de resultados para h = 0.2 e i = 0, 4.

3Eva_IIT2008_T4 Raices por Newton

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM00158

Tema 4. Con los conocimientos de cálculo diferencial y geometría analítica, deduzca el método de Newton para determinar las raíces de una función .

Luego use el teorema de convergencia del punto fijo a éste método y explique el objetivo de su aplicación.

s2Eva_IT2008_T1_MN Producción petroleo

Ejercicio: 2Eva_IT2008_T1_MN Producción petroleo

Literal a

Para el cálculo de las derivadas se hace uso de las fórmulas de diferenciación presentadas en la unidad 6, y basadas en el polinomio de Taylor:

f'(x_i) = \frac{f(x_{i+1})-f(x_i)}{h} + O(h) f''(x_i) = \frac{f(x_{i+2})-2f(x_{i+1})+f(x_i)}{h^2} + O(h)
[ dia, prod, dprod, d2prod]
[[ 1.000e+00  3.345e+03 -1.000e+02  6.600e+01]
 [ 2.000e+00  3.245e+03 -3.400e+01  1.320e+02]
 [ 3.000e+00  3.211e+03  9.800e+01 -5.600e+01]
 [ 4.000e+00  3.309e+03  4.200e+01  1.900e+01]
 [ 5.000e+00  3.351e+03  6.100e+01 -2.430e+02]
 [ 6.000e+00  3.412e+03 -1.820e+02  8.700e+01]
 [ 7.000e+00  3.230e+03 -9.500e+01  9.200e+01]
 [ 8.000e+00  3.135e+03 -3.000e+00  0.000e+00]
 [ 9.000e+00  3.132e+03 -3.000e+00  0.000e+00]
 [ 1.000e+01  3.129e+03  0.000e+00  0.000e+00]]

representados en las siguientes gráfica:

literal b

Dado que las fórmlas de error usadas tienen error del orden h: O(h), el error de las fórmulas es del orden de:

h= dia[1]-dia[0] = 2-1 = 1

literal c

Para el día dos se observa un decrecimiento en la producción, tal como lo refleja el valor negativo de la primera derivada.
Sin embargo para el día siguiente, la producción no mantiene la tasa de decrecimiento, se observa la segunda derivada positiva, Empieza a «acelerar».


Las instrucciones en Python para la tabla presentada son:

# 2Eva_IT2008_T1_MN Producción petroleo
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
dia = np.array( [1., 2, 3, 4, 5, 6, 7, 8, 9, 10])
produccion = [3345., 3245, 3211, 3309, 3351, 3412, 3230, 3135, 3132, 3129]
produccion = np.array(produccion, dtype = float)

# PROCEDIMIENTO
n = len(dia)

# primera derivada
dp = np.zeros(n,dtype=float)
for i in range(0,n-1,1):
    dp[i] = (produccion[i+1]-produccion[i])/(dia[i+1]-dia[i])

# segunda derivada
d2p = np.zeros(n,dtype=float)
h = dia[1]-dia[0]
for i in range(0,n-2,1):
    d2p[i] = (produccion[i]-2*produccion[i+1]+ produccion[i+2])/(h**2)

tabla = np.concatenate(([dia],[produccion],[dp],[d2p]),axis=0)
tabla = np.transpose(tabla)

# SALIDA
print(" [ dia, prod, dprod, d2prod]")
print(tabla)

# gráfica
plt.subplot(121)
plt.plot(dia,produccion)
plt.xlabel('dia')
plt.ylabel('producción')
plt.grid()
plt.subplot(122)
plt.plot(dia,dp,color='green',label='dp')
plt.xlabel('dia')
plt.plot(dia,d2p,color='orange',label='d2p')
plt.axhline(0)
plt.legend()
plt.grid()
plt.show()

2Eva_IIT2008_T3_MN EDO no lineal

2da Evaluación II Término 2008-2009. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) Se tiene la siguiente ecuación no lineal con derivadas:

y'' +y'+y = \ln (x) 1\leq x \leq 3, y(1)=0, y(3) =1

Se requiere determinar la solución de ésta ecuación como la función y(x) .

Siga el siguiente procedimiento para obtener tres puntos de ésta función y(x) para los valores de x=1.5, 2.0 y 2.5

a. Sustituya las derivadas por aproximaciones en un punto i. También exprese las variables x,y en el punto i. Escriba la ecuación resultante, la cual se denomina ecuación de diferencias.

b. Evalúe la ecuación de diferencias en cada uno de los tres puntos xi, i = 1, 2, 3 en los que se desea concocer yi.
Se obtendrá un sistema de ecuaciones lineales en el que las incógnitas son los tres valores de yi.
Escriba el sistema lineal resultante.

c. Realice dos iteraciones con el método de Gauss-Seidel para resolver el sistema de ecuaciones. Comience con los tres valores iniciales iguales a 0.5

d. Calcule la norma del error con los valores obtenidos en las dos iteraciones.
¿Se puede predecir que converge?
¿Se puede asegurar que converge?
Justifique sus respuestas.

2Eva_IIT2008_T2_MN Emisiones CO2

2da Evaluación II Término 2008-2009. ICM02188 Métodos Numéricos 

Tema 2. (40 puntos) Se han registrado seis mediciones de la emisión en Kg de CO2 en una fábrica entre la 1 y las 3 de la tarde:

t hora  1.0  1.4 1.8  2.2 2.6
emisión[t] Kg  2.2874 5.5947 10.6046 16.0527 18.0455

a. Tabule las diferencias finitas hacia adelante

b. Con un polinomio de segundo grado, calcule la cantidad de CO2 que se emitió a las 2 de la tarde. Encuentre el error en el resultado obtenido

c. Usando una fórmula de segundo orden, calcule la velocidad (emisión‘(t)) con la que está emitiéndose la cantidad de CO2 cuando t=1.8 horas. Estime el error en el resultado obtenido.

d. Usando una fórmula de segundo orden, calcule la aceleración (emisión''(t)) con la que está emitiéndose la cantidad de CO2 cuando t=1.8 horas. Estime el error en el resultado obtenido.

e. Usando una aproximación lineal entre los datos de las mediciones, calcule la cantidad total de CO2 que se emitió entre la una de la tarde y las tres de la tarde (fórmula de los trapecios). Estime el error en el resultado obtenido.

f. Usando una aproximación parabólica entre los datos de las mediciones calcule la cantidad total de CO2 que se emitió entre la una de la tarde y las tres de la tarde (fórmula de Simpson). Estime el error en el resultado obtenido.


t    =    [ 1.0,    1.4,     1.8,     2.2,     2.6   ]
emision = [ 2.2874, 5.5947, 10.6046, 16.0527, 18.0455]

2Eva_IIT2008_T1_MN Valor anual de maquinaria por desgaste

2da Evaluación II Término 2008-2009. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) La depreciación es el mecanismo mediante el cual se reconoce el desgaste que sufre un bien por el uso que se haga de él [1].valormaquinariaentiempo01

La siguiente tabla presenta el valor anual C(x) de una máquina en función de los años de vida x en operación productiva.

 x (años) 5 10 15 20
 C[x] (USD) 10300 8700 9600 12300

a. Use todos los datos para obtener un polinomio para aproximar el costo anual en función de x

b. Con el polinomio obtenido encuentre el tiempo de vida aproximado para el cual el costo anual es mínimo.

Referencia: [1] Depreciación. Wikipedia


x = [    5,   10,   15,    20]
C = [10300, 8700, 9600, 12300]

2Eva_IT2008_T3_MN Estimar utilidades

2da Evaluación I Término 2008-2009. ICM02188 Métodos Numéricos

Tema 3. Se tienen las utilidades anuales de una empresa cada 3 años.

 Año  0  3  6  9 12
 Utilidad Anual  0  16500  14520  1540  14690

a. Encuentre el trazador cúbico natural que se ajusta a los datos de la tabla. Resuelva el sistema de ecuaciones con el método de Gauss=Seidel con un error menor a 10-3

b. Aproxime el área bajo la curva de 0 a 12 años aplicando una vez la Cuadratura de Gauss.


anio = [ 0, 3, 6, 9, 12]
utilidad = [ 0, 16500, 14520, 1540, 14690]

2Eva_IT2008_T2_MN Integral Simpson

2da Evaluación I Término 2008-2009. ICM02188 Métodos Numéricos

Tema 2. Para el siguiente integral

A = \int_1^{\infty}\frac{1}{1+x^4} \delta x

a. Aproxime el valor de A usando el método de Simpson con 4 subintervalos

b. Estime la cota de error para el resultado obtenido

2Eva_IT2008_T1_MN Producción petroleo

2da Evaluación I Término 2008-2009. ICM02188 Métodos Numéricos

Tema 1. En la siguiente tabla se muestra la producción diaria de barriles de petróleo en un determinado pozo en la región oriental ecuatoriana.

 día  producción
 1  3345
 2  3245
 3  3211
 4  3309
 5  3351
 6  3412
 7  3230
 8  3135
 9  3132
 10  3129

a. Aproxime la primera derivada y la segunda derivada en los días 2 y 5

b. Estime la cota del error en los resultados obtenidos

c. Exprese en palabras el significado del comportamiento de la producción en los días señalados.


dia = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
produccion = [3345, 3245, 3211, 3309, 3351, 3412, 3230, 3135, 3132, 3129]