3Eva_IT2017_T2 EDO Runge-Kutta d3y/dx3

3ra Evaluación I Término 2017-2018. 11/Septiembre/2017. MATG1013

Tema 2. Use un método de Runge Kutta para sistemas y aproxime la solución de la siguiente EDO de orden superior

y'''+ 2y'' - y'- 2y = e^t

0 ≤ t ≤ 1

y(0) = 1
y'(0) = 0
y''(0) = 0

con h = 0.25

3Eva_IT2017_T1 Crecimiento de levadura

3ra Evaluación I Término 2017-2018. 11/Septiembre/2017. MATG1013

Tema 1. La razón de crecimiento específico g de una levadura que produce un antibiótico es una función de la concentración del alimento c,

g = \frac{2c}{4+0.8c + c^2 +0.2 c^3}

Como se ilustra en la figura, el crecimiento parte de cero a muy bajas concentraciones debido a la limitación de alimento.

También parte de cero en altas concentraciones debido a los efectos de toxicidad.

a) Encuentre el valor de c para el cual el crecimiento es un máximo.

b) Evalúe la función g del problema 1 para c=0,1,2,3, y encuentre el trazador cúbico natural para aproximar el máximo de g, encuentre el error.

3Eva_IT2015_T4 Fórmula central de orden 2

3ra Evaluación I Término 2015-2016. 22/Septiembre/2015. ICM00158

Tema 4. Dados los puntos x0, x1 y x2, con h constante y sus respectivas imágenes.

Deduzca la fórmula central de orden 2 para aproximar la segunda derivada en el punto x1 y estime el error.

3Eva_IT2015_T3 Poisson 3D

3ra Evaluación I Término 2015-2016. 22/Septiembre/2015. ICM00158

Tema 3. La ecuación de Poisson se puede escribir en tres dimensiones como

\frac{\partial ^2 T}{\partial x^2} + \frac{\partial ^2 T}{\partial y^2} + \frac{\partial ^2 T}{\partial z^2} = f(x, y ,z)

a. Plantee las Temperaturas dentro de un cubo unitario con condiciones de frontera cero y f = -10. Utilice Δx = Δy = Δz = 1/3

b. Utilice el método de Gauss-Seidel para resolver el sistema en el literal a, (realice tres iteraciones y estime el error)

3Eva_IT2015_T2 Aproximar integral

3ra Evaluación I Término 2015-2016. 22/Septiembre/2015. ICM00158

Tema 2. Use cuadratura de Gauss de 2 términos tanto para el sentido en x como en y para aproximar la integral

I= \int_0^1 \int_0^1 e^{x^2+y^2} \delta y \delta x

a) Usando n=1 y m=1 (intervalos)
b) Usando n=2 y m=2 (intervalos)


Siendo n y m, el número de intervalos o tramos en el rango de cada eje.

3Eva_IT2015_T1 Valor de Frontera

3ra Evaluación I Término 2015-2016. 22/Septiembre/2015. ICM00158

Tema 1. El problema con valor de frontera

y'' = y'+ 2y+ cos(x)

0 ≤ x ≤ π/2

y(0) = -0.3
y(π/2) = -0.1

a) Aproxime usando las diferencias finitas con h = π/4 y estime el error.

b) Aproxime usando las diferencias finitas con h = π/8 y estime el error.

3Eva_IIT2014_T3 Advección-difusión

3ra Evaluación II Término 2014-2015. 10/Marzo/2015. ICM00158

Tema 3. La ecuación de advección-difusión se utiliza para calcular la distribución de la concentración que hay en el lado largo de un reactor químico rectangular,

\frac{\partial c}{\partial t} = D \frac{\partial^2c}{\partial x^2} - U\frac{\partial c}{\partial x} - kc

Donde:
c=concentración (mh/m3),
t= tiempo (min),
D=coeficiente de difusión (m2/min),
x= distancia a lo largo del eje longitudinal del tanque (m),

donde x=0 en la entrada del tanque,
U =velocidad en la dirección de x (m/min) y
k = tasa de reacción (1/min) con la que el producto químico se convierte en otro.

Desarrolle un esquema explícito para resolver esta ecuación en forma numérica. Pruébela para k=0.15, D=100 y U=1, para un tanque con una longitud de 10 m. Use Δx=1 m, y un Δt=0.005.

Suponga la concentración del flujo de entrada es de 100 y la concentración inicial en el tanque es de cero.

Realice la simulación de t=0 a 100 y grafique las concentraciones en cada tiempo versus x. (Solo dos iteraciones)

3Eva_IIT2014_T2 Crecimiento demográfico

3ra Evaluación II Término 2014-2015. 10/Marzo/2015. ICM00158

Tema 2. Sea P(t) el número de individuos de una población en el tiempo t, medido en años.

Si la tasa de natalidad promedio b es constante y la tasa de mortalidad d es proporcional al tamaño de la población (debido a la sobrepoblación), entonces la tasa de crecimiento demográfico estará dada por la ecuación logística

\frac{\delta P(t)}{\delta t} = b P(t) - k[P(t)]^2

donde d = k P(t).

Suponga que P(0) = 50976, b = 2.9×10-2 y que k = 1.4×10-7.

Calcule la población después de 2 años, use h = 0.5 años y el método de Taylor de orden 2. Estime el error.


Referencias:

3Eva_IIT2014_T1 Integral en superficie

3ra Evaluación II Término 2014-2015. 10/Marzo/2015. ICM00158

Tema 1. El área de la superficie descrita por z=f(x,y) para (x,y) en R está dada por

\int_R \int \sqrt{\big[f_x(x,y) \big]^2 + \big[f_y(x,y) \big]^2 +1} \text{ } \delta A

Aproxime el valor de la integral con el método de Simpson 1/3 en ambas direcciones con n = m = 2, para el área de la superficie en el hemisferio

x2 + y2 + z2 = 9,

z ≥ 0

que se encuentra arriba de la región R en el plano descrito por

R={(x,y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

3Eva_IT2012_T4 EDO, deducir con diferencias finitas

3ra Evaluación I Término 2012-2013. 11/Septiembre/2012. ICM00158

Tema 4. Deducir el método de diferencias finitas para el problema de valor de frontera:

y''= p(x) y' + q(x) y + r(x) a\leq x \leq b y(a)= \alpha y(b)= \beta

Para las derivadas, usar las fórmulas de diferencia centrada. Las funciones son continuas en [a,b].