1Eva_IT2011_T1 Encontrar α en integral

1ra Evaluación I Término 2011-2012. 5/Julio/2011. ICM00158

Tema 1. Determine de ser posible, el valor del parámetro α > 0 , tal que

\int_{\alpha}^{2\alpha} x e^{x}dx = 10

a) Justifique la existencia del parámetro α.

b) En caso de existir el parámetro α , aplicar el método de Newton para aproximar el valor de α , con una tolerancia de 10−4 .

2Eva_IIT2010_T2 Calcular volumen

2da Evaluación II Término 2010-2011. 1/Febrero/2011. ICM00158

Tema 2. Calcule el volumen

\int\int u(x,y) \delta x \delta y

en el que u(x,y) está definido con la ecuación diferencial

\frac{\delta ^2 u}{\delta x^2} + \frac{\delta ^2 u}{\delta y^2} = 4 u = u(x,y) 0\leq x \leq 2 0 \leq y \leq 1

con las condiciones en los bordes:

u(0,y) = 40 , 0\lt y \lt 1 u(2,y) = 50 , 0\lt y \lt 1 u(x,0) = 40 + 5x , 0\lt x \lt 2 u(x,1) = 40 + 5x , 0\lt x \lt 2

Use el método de diferencias finitas para resolver la ecuación diferencial y la fórmula de Simpson para calcular el integral. En todos los cálculos use Δx = Δy = 0.5

2Eva_IIT2010_T1 Problema valor inicial

2da Evaluación II Término 2010-2011. 1/Febrero/2011. ICM00158

Tema 1. Resolver el siguiente problema de valor inicial:

y'+ \frac{2}{t}y = \frac{\cos (t)}{t^2} y(\pi)=0, t\gt 0

a. Determinar f(t,y)

b. Escribir el algoritmo de Runge-Kutta de 4to orden para la función definida en el literal a.

c. Presentar la tabla de resultados para el tamaño de paso h=0.2, con i = [0,9]

1Eva_IIT2010_T3 Raíz de Polinomio

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 3. El polinomio P(x) tiene una única raiz positiva.

P(x) = x3 – x2 -x -1

Encuentre un intervalo donde se garantice la existencia de ésta raíz (justifique).

Utilizando el método del punto fijo, presente una tabla que contenga la sucesión de valores, el error

en = | xn – xn-1|, n≥1,

y con un criterio de interrupción del método iterativo de en ≤ 10-9

1Eva_IIT2010_T2 Sistema ecuaciones, X0 = unos

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 2. Considere el sistema AX = B dado por:

\begin {cases} 0.4 x + 1.1 y +3.1z = 7.5 \\ 4x + 0.15y + 0.25z = 4.45\\ 2x+5.6y+3.1z=0.1\end{cases}

De ser posible, manipule el sistema de tal forma que se garantice la convergencia del método de Gauss-Seidel, determine la norma de la matriz T.

Determine la solución con éste método con el vector inicial (1,1,1) y con una tolerancia 10-4.


A = np.array([[0.4, 1.1 ,  3.1],
              [4.0, 0.15, 0.25],
              [2.0, 5.6 , 3.1]])
B = np.array([7.5, 4.45, 0.1])
X = np.array([1.0, 1.0, 1.0])
tolera = 1e-4
iteramax = 100

1Eva_IIT2010_T1 Aproximar con polinomio

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 1. La función de variable real f(x) será aproximada con el polinomio de segundo grado P(x) que incluye los tres puntos f(0), f(π/2), f(π).

f(x) = e^x \cos (x) +1 0\leq x \leq \pi

Encuentre la magnitud del mayor error E(x) = f(x) -P(x), que se produciría al usar esta aproximación. Resuelva la ecuación no lineal resultante con la fórmula de Newton con un error máximo de 0.0001.

2Eva_IT2010_T3 EDP elíptica, Placa no rectangular

2da Evaluación I Término 2010-2011. 31/Agosto/2010. ICM00158

Tema 3. La placa plana mostrada en la figura está construida con cierto metal, y se ha determinado que la temperatura en los bordes de la placa es la que se indica en la figura.

Ademas de tiene que el término no homogéneo asociado a la ecuación elíptica respectiva es f(x,y)=20

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = f

El problema consiste en determinar la temperatura en los puntos del interior de la placa en la malla que se muestra en la figura.

a. Determinar el algoritmo en diferencias finitas que resuelve el problema

b. Plantear el sistema de ecuaciones lineas que resuelve el problema

c. Utilice el método de Gauss para resolver el sistema de ecuaciones generado

2Eva_IT2010_T2 Movimiento angular

2da Evaluación I Término 2010-2011. 31/Agosto/2010. ICM00158

Tema 2. La ecuación de un movimiento angular está dada por

y'' + 10 \sin (y) =0 0\leq t \leq 1 y(0)=0, y'(0)=0.1

Empleando el método de Runge-Kutta de 4to orden generalizado y un paso de 0.25, aproximar la solución de la ecuación en t=0.50


Referencia:  Chapra 28.4 p842 pdf 866

https://nitanperdida.com/2017/12/24/banos-y-el-columpio-del-fin-del-mundo/
BAÑOS DE AGUA SANTA Y EL COLUMPIO DEL FIN DEL MUNDO

2Eva_IT2010_T1 Perímetro de región

2da Evaluación I Término 2010-2011. 31/Agosto/2010. Análisis Numérico

Tema 1. Aproximar el perímetro de la región ubicada en el primer cuadrante, acotada por los ejes coordenados y la curva

\begin{cases} x = 2 cos(t) \\ y = \sqrt{3} \sin{(t)} \end{cases} t \in \Big[0, \frac{\pi}{2}\Big]

Utilice la regla compuesta de Simpson con n=8