1Eva_IIT2009_T2_MN Factor de riesgo en avenida

1ra Evaluación II Término 2009-2010. 1/Diciembre/2009. ICM02188 Métodos Numéricos

Tema 2. (30 puntos). Para el control de los accidentes de tránsito, se requiere modelar un factor del riesgo f(x) de un accidente de tránsito en cierta avenida, en función del número de vehículos x que circulan por ella a la semana.

Por observación directa se han determinado los siguientes factores:

x en miles 10 7 6
f(x) 0.8 0.5 0.4

Se propone el siguiente modelo para predecir el factor de riesgo:

f(x) = ax^2 + bx + c

a) Sustituya cada uno de los tres datos (x, f(x)) en el modelo y obtenga un sistema de tres ecuaciones lineales.
Obtenga la solución con el método de Gauss.

b) Determine el factor de riesgo que tendrá la avenida si el número de vehículos que circula semanalmente es 5 (miles).


Referencia: Exceso de velocidad, principal causa de siniestros de tránsito en Guayaquil. eluniverso.com. 11 Nov.2019

https://www.eluniverso.com/guayaquil/2019/11/11/nota/7599413/exceso-velocidad-principal-causa-accidentes-transito-guayaquil

1Eva_IIT2009_T1_MN Precio de producto ln(x)

1ra Evaluación II Término 2009-2010. 1/Diciembre/2009. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Suponga que el precio de un producto f(x) depende de la cantidad disponible x, con la siguiente relación:

f(x) = 50 ln(x) 10 \leq x \leq 40

a) Determine la cantidad del producto para que el precio sea igual a 160.
Use el método de Newton con una precisión 10-4,

b) Encuentre un intervalo [a, b] tal que para cualquier aproximación inicial que pertenezca a ese intervalo, el método de Newton converge en el literal anterior.

1Eva_IT2009_T3 Precio y demanda con competencia

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM00158

Tema 3. Una empresa que vende cierto producto ha observado que su demanda depende del precio al que se lo vende (P en $/unidad) y también del precio al que la competencia vende un producto de similares características (Q en $/unidad).

Recopilando información histórica respecto a lo que ha sucedido en el pasado, se observó que la demanda diaria (unidades vendidas por día) de este producto fueron de:

Q\P 1 1.1 1.2
1 100 91 83
1.1 110 100 92
1.2 120 109 100
1.3 130 118 108

Use todos los datos dados y el polinomio de interpolación de Lagrange para estimar los Ingresos mensuales de la empresa por la venta de este producto si decide venderlo a $1.15 por unidad y conoce que la competencia estableció un precio de $1.25 por unidad.

1Eva_IT2009_T2 Materiales y Productos 3×4

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM00158

Tema 2. (40 puntos). Una empresa produce cuatro productos: P1, P2, P3, P4 usando tres tipos de materiales M1, M2, M3.

Para fabricar cada Kg de cada producto se requiere la siguiente cantidad en Kg, de los tres materiales en la siguiente proporción:

P1 P2 P3 P4
M1 0.2 0.5 0.4 0.2
M2 0.3 0 0.5 0.6
M3 0.4 0.5 0.1 0.2

La cantidad disponible de cada material es: 10, 12, 15 Kg respectivamente, los cuales deben usarse completamente.

a) Plantee un sistema de ecuaciones lineales para determinar la cantidad producida de cada producto. Use el método de Gauss-Jordan para reducir el sistema a la forma escalonada con 1’s en la diagonal hasta donde sea posible. Use dos decimales en los cálculos.

b) Encuentre la variable libre y asígnela un t. Exprese la solución (cantidad de unidades producidas de cada producto) en términos de la variable t y determine su dominio.


Suponiendo que la última variable para P4 sea cero, se inicia con:

A = np.array([[0.2, 0.5, 0.4],
              [0.3, 0.0, 0.5],
              [0.4, 0.5, 0.1]])
B = np.array([10, 12, 15],dtype=float)

1Eva_IT2009_T1 Demanda de un producto alcanza la producción

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM00158 y ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Oferta Demaanda Producto01
Se propone el siguiente modelo para describir la demanda de un producto, en donde t es tiempo en meses:

f(t) = 200 t e^{-0.75t}

a) Encuentre el primer valor de t para el cual la demanda alcanza el valor de 80 unidades.
Use el método de Newton para los cálculos.
Elija el valor inicial y muestre los valores intermedios.
Calcule la respuesta con cuatro decimales exactos.

b) Encuentre el valor de t para el cual la demanda alcanza el valor máximo.
Use el método de Newton para los cálculos .
Elija un valor inicial y muestre los valores intermedios.
Calcule la respuesta con cuatro decimales exactos.

2Eva_IT2009_T3_MN Asignar presupuesto a comunidades aledañas

2da Evaluación I Término 2009-20010. ICM02188 Métodos Numéricos

Tema 3 (30 puntos) En una región se han agregado 4 nuevas comunidades a las 8 comunidades existentes. Estas 8 comunidades existentes reciben anualmente recursos monetarios (miles de dólares) como se indica en el cuadro adjunto.

Las 4 nuevas comunidades deberá recibir una cantidad de dinero igual al promedio de las comunidades ubicadas inmediatamente a su alrededor. Estos valores se los ha representado por x1, x2, x3, x4 y deben ser calculados:

48.2 53.4 x4
40.5 x1 65.1
x2 58.0 42.6
55.4 x3 70.8

a. Plantee un sistema de ecuaciones para representar y resolver este problema.

b. Determine si el método iterativo de Jacobi convergerá. Justifique su respuesta.

c. Comience con un vector nulo y calcule la solución hasta obtener un decimal de precisión. Use el método iterativo de Gauss-Seidel. Escriba los resultados intermedios.

2Eva_IT2009_T2_MN Longitud de perfil de la plancha

2da Evaluación I Término 2009-20010. ICM02188 Métodos Numéricos

Tema 2 (30 puntos). plancha Techo Ondulada
En el techado de las casas se utilizan planchas corrugadas con perfil ondulado.

Cada onda tiene la forma
f(x) = sen(x)
con un periodo de 2π pulgadas.

El perfil de la plancha tiene 8 ondas y la longitud L de cada onda se puede calcular con la siguiente integral:

L = \int_0^{2\pi} \sqrt{1+(f'(x))^2} \delta x

Este integral no puede ser calculado por métodos analíticos.

Encuentre la longitud del perfil de la plancha. Use la fórmula de Simpson con m=6 para calcular L.

 

2Eva_IT2009_T1_MN Demanda de producto por semana

2da Evaluación I Término 2009-20010. ICM02188 Métodos Numéricos

Tema 1 (40 puntos). Los siguientes datos representan la medición de la demanda f de un producto durante cinco semanas consecutivas:

t = [ 1,  2,  3,  4,  5]
f = [24, 45, 62, 65, 58]

Use todos los datos proporcionados para calcular los siguientes resultados y estimar el error en sus respuestas:

a. Encuentre la demanda en la semana 3.5

b. Determine el día en que la demanda fue  50

c. En qué día se tuvo la mayor demanda.

1Eva_IT2009_T2_MN Costos de producción y presupuesto

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM02188 Métodos Numéricos

Tema 3. (40 puntos) Una empresa produce por semana tres productos P1, P2 y P3. Cada producto registra costo de materia prima M1 y costo de manufactura M2. El costo en dólares para obtener cada unidad de producto se describe en el siguiente cuadro:

P1 P2 P3
M1 2 4 5
M2 8 1 2

La cantidad de dinero presupuestada por semana es de 400 dólares para la materia prima y 200 dólares para manufactura. Estos valores deben usarse completamente cada semana.

a. Plantee un sistema de ecuaciones lineales para determinar la cantidad producida de cada producto. Use el método de Gauss-Jordan para reducir el sistema a su forma escalonada con 1’s en la diagonal hasta donde sea posible. Use dos decimales en los cálculos.

b. Encuentre la variable libre, asignando un valor t. Exprese  la solución (cantidad de unidades producidas de cada producto) en términos de la variable libre t y determine su dominio.

c. Si x1, x2, x3 representan la cantidad de unidades producidas por semana y se conoce que el costo de transporte por semana está dato por la función

f(t) = 2( x_1)^2 + 4(x_2)^2 +3(x_3)^2

encuentre el valor de t para el cual el costo de trasporte semanal es mínimo. Con éste valor, indique cuál debe ser el nivel de producción semanal de los tres productos para minimizar costos.

 

1Eva_IT2009_T3_MN Interpolar contagios por virus

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) gripecontagio01
Suponga que el siguiente modelo f(x) describe la cantidad de personas que son infectadas por un virus

f(x) = a x + b x^2 + c e^{0.1x}

en donde x es tiempo en días. Los coeficientes a, b, c  deben determinarse.

Se conoce que la cantidad de personas infectadas registradas son:

x 0 5 10
f(x) 1 4 20

a. Plantee un sistema de ecuaciones lineales.

b. Resuelva el sistema para determinar los coeficientes

c. Use el modelo f(x) para determinar el día que la cantidad de personas infectadas por el virus sea 1000. Obtenga la solución con el método de la Bisección.

Previamente encuentre un intervalo de convergencia y obtenga la respuesta con un decimal exacto.

Muestre los valores intermedios calculados hasta llegar a la solución.