3Eva_IT2012_T3 EDO Valor inicial concepto

3ra Evaluación I Término 2012-2013. 11/Septiembre/2012. ICM00158

Tema 3. Deducir el método iterativo del punto medio para el problema de valor inicial:
\begin{cases} y'= f(t,y), a\leq t \leq b \\ y(a) = \alpha \end{cases}
a partir de  y(ti+1) = y(ti) + h T(2) (ti, y(ti))

Donde h es el tamaño de paso.

3Eva_IT2012_T2 factor de compensación

3ra Evaluación I Término 2012-2013. 11/Septiembre/2012. ICM00158

Tema 2. Un sistema de compensación para un estudiante que hace una maestría o Doctorado en el extranjero utiliza un trazador cúbico natural para establecer el factor f(x) de ayuda de acuerdo con la siguiente tabla:

x 1.0 1.3 1.7 2.0
f(x) 2.0 2.3 3.3 3.5

x, nivel de vida del país; f(x), factor de ayuda

a. Encuentre el trazador cúbico natural (S»(1) = 0, S»(2) = 0).

b. Aproxime la integral de f(x) desde x=1, hasta x=2, empleando el resultado obtenido en el literal a.


xi = [ 1.0, 1.3, 1.7, 2.0]
fi = [ 2.0, 2.3, 3.3, 3.5]

2Eva_IT2012_T3_MN EDO Taylor 2 Contaminación de estanque

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) Suponga un estanque de cierto tamaño con agua, la cual está siendo contaminada por una corriente que ingresa constantemente.

En la siguiente ecuación s representa la cantidad de contaminación en el tiempo t:

s'- \frac{26s}{200-t} - \frac{5}{2} = 0 0\leq t \lt 2.00

Con la condición inicial s(0) = 0, la cual significa que inicialmente el agua está limpia.

Determine la cantidad de contaminación s(t) para

t =  [0.1, 0.2, 0.3, 0.4]

usando la fórmula de Euler, es decir los dos primeros términos de la Serie de Taylor.

3Eva_IT2012_T1 Sistema Ecuaciones no lineales

3ra Evaluación I Término 2012-2013. 11/Septiembre/2012. ICM00158

Tema 1. Dado el sistema de ecuaciones no lineales

3x^2 + 3y^2 - 15 = 0 2x^2y- 1 = 0

x∈R;   ≥ 1

a. Realice un bosquejo gráfico y especifique el número de soluciones del sistema.

b. Determine la ecuación en términos de una variable para resolver el sistema.

c. Justifique un intervalo donde se encuentre la solución de la ecuación planteada en literal b.

d. Aproxime la solución empleando el método de Newton-Raphson con tolerancia de 10-6.

e. Escriba correctamente la solución hallada.

2Eva_IT2012_T2_MN Altura del cable teleférico

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM02188 Métodos Numéricos

Tema 2. (30 puntos) Utilice los datos del tema anterior para encontrar el valor aproximado de la altura del cable teleférico cuando x = 0.4. Use el polinomio de diferencias finitas de grado 3 y estime el error en la interpolación.

2Eva_IT2012_T1_MN Longitud de teleférico

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM02188 Métodos Numéricos

Tema 1. (40 puntos)

La trayectoria de un teleférico está definida por una curva que tiene los puntos (x, f(x)) segun la tabla que se muestra a continuación:

 

x    = [0.00, 0.25, 0.50, 0.75, 1.00]
f(x) = [25.0, 22.0, 32.0, 51.0, 75.0] 

Para calcular la longitud de dicha curva se debe usar la integral:

L = \int_a^b \sqrt{1+[f'(x)]^2} \delta x

a. Aproxime el valor de la derivada f‘(x) en todos los puntos de la tabla con fórmulas de orden 2.

b. Aproxime el valor de la longitud del cable del teleférico entre 0 y 1 con la fórmula de Simpson

c. Aproxime el error de la longitud calculada.

2Eva_IT2012_T3 EDP elíptica, placa rectangular

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM00158

Tema 3. (20 puntos) Aproxime la solución de la ecuación diferencial parcial:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = (x^2 + y^2) e^{xy} 0\lt x \lt 1, 0\lt y \lt 0.5

Con las condiciones de frontera:

u(0,y) = 1, u(1,y) = e^y , 0 \leq y \leq 0.5 u(x,0) = 1, u(x,0.5) = \sqrt{e^x} , 0 \leq x \leq 1

Usando un tamaño de paso hx = hy = 0.25

2Eva_IT2012_T2 Modelo de clima

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM00158

Tema 2. (20 puntos) El meteorólogo Edward Lorenz propuso inicialmente el siguiente sistema para predecir el comportamiento del clima:

\begin{cases} x'(t) = \alpha (y(t) - x(t)) \\ y'(t) = \rho x(t) - y(t) - x(t) z(t) \\ z'(t) = -\beta z(t) + x(t) y(t) \end{cases}

Para su estudio eligió los parámetros α = 10, β = 8/3 , ρ=28 con las condiciones iniciales x(0) = 10, y(0) = 7, z(0) = 7

Use el método de Runge-Kutta clásico de cuarto orden con h = 0.25 para calcular la solución cuando t=1


Referencia: Chapra 28.2 p833 pdf857

 

https://en.wikipedia.org/wiki/Lorenz_system

2Eva_IT2012_T1 Longitud de teleférico

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM00158

Tema 1. (20 puntos)

La trayectoria de un teleférico está definida por una curva que tiene los puntos (x, f(x)) segun la tabla que se muestra a continuación:

 

x    = [ 0.00, 0.25, 0.50, 0.75, 1.00]
f(x) = [25.00,   22,   45,   62,   75  ] 

Para calcular la longitud de dicha curva se debe usar la integral:

\int_0^1 \sqrt{1+[f'(x)]^2} \delta x

a. Aproxime el valor de f'(x) pra cada uno de los valores de x de la tabla

b. Aproxime el valor de la longitud del cable usando el método de Simpson

s2Eva_IT2012_T1_MN Longitud de teleférico

Ejercicio: 2Eva_IT2012_T1_MN Longitud de teleférico

Los datos tomados para el problema son:

x    = [0.00, 0.25, 0.50, 0.75, 1.00]
f(x) = [25.0, 22.0, 32.0, 51.0, 75.0]

Se debe considerar que los datos tienen tamaño de paso (h) del mismo valor.

Literal a)

Fórmulas de orden 2, a partir de:

http://blog.espol.edu.ec/analisisnumerico/formulas-de-diferenciacion-por-diferencias-divididas/

considere que el término del Error O(h2), perdió una unidad del exponente en el proceso, por lo que las fórmulas de orden 2 tienen un error del mismo orden.

Se puede usar por ejemplo:

Para los términos x en el intervalo [0,0.50] hacia adelante

f'(x_i) = \frac{-f(x_{i+2})+4f(x_{i+1})-3f(x_i)}{2h} + O(h^2)

Para el término x con 0.75, centradas:

f'(x_i) = \frac{f(x_{i+1})-f(x_{i-1})}{2h} + O(h^2)

y para el término x con 1.0, hacia atras:

f'(x_i) = \frac{3f(x_{i})-4f(x_{i-1})+f(x_{i-2})}{2h} + O(h^2)

Luego se aplica el resultado en la fórmula:

g(x) = \sqrt{1+[f'(x)]^2}

L = \int_a^b g(x) \delta x .

Literal b)

Use las fórmulas de integración numérica acorde a los intervalos. Evite repetir intervalos, que es el error más común.

Por ejemplo, se puede calcular el integral de g(x) aplicando dos veces Simpson de 1/3, que sería la más fácil de aplicar dado los h iguales.

Otra opción es Simpson de 3/8 añadido un trapecio, otra forma es solo con trapecios en todo el intervalo.

Como ejemplo de cálculo usando un algoritmo en Python se muestra que:

f'(x): [-38.  22.  66.  86. 106.]
 g(x): [ 38.0131  22.0227  66.0075  86.0058 106.0047]
L con S13:  59.01226169578733
L con trapecios:  61.511260218050175

los cálculos fueron realizados a partir de la funciones desarrolladas durante la clase. Por lo que se muestran 3 de ellas en el algoritmo.

import numpy as np
import matplotlib.pyplot as plt

# Funciones para integrar realizadas en clase
def itrapecio (datos,dt):
    n=len(datos)
    integral=0
    for i in range(0,n-1,1):
        area=dt*(datos[i]+datos[i+1])/2
        integral=integral + area 
    return(integral)

def isimpson13(f,h):
    n = len(f)
    integral = 0
    for i in range(0,n-2,2):
        area = (h/3)*(f[i]+4*f[i+1]+f[i+2])
        integral = integral + area
    return(integral)

def isimpson38 (f,h):
    n=len(f)
    integral=0
    for i in range(0,n-3,3):
        area=(3*h/8)*(f[i]+3*f[i+1]+3*f[i+2] +f[i+3] )
        integral=integral + area
    return(integral)

# INGRESO
x = np.array( [0.0,0.25,0.50,0.75,1.00])
fx= np.array([ 25.0, 22.0, 32.0, 51.0, 75.0])

# PROCEDIMIENTO
n = len(fx)
dx = x[1]-x[0]

# Diferenciales
dy = np.zeros(n)

for i in range(0,n-2,1):
    dy[i] = (-fx[i+2]+4*fx[i+1]-3*fx[i])/(2*dx)
# Diferenciales penúltimo
i = n-2
dy[i] = (fx[i+1]-fx[i-1])/(2*dx)
# Diferenciales último
i = n-1
dy[i] = (3*fx[i]-4*fx[i-1]+fx[i-2])/(2*dx)

# Función gx
gx = np.sqrt(1+(dy**2))

# Integral
integral = isimpson13(gx,dx)
integrartr = itrapecio(gx,dx)

# SALIDA 
print('f\'(x):', dy)
print(' g(x):', gx)
print("L con S13: ", integral )
print("L con trapecios: ", integrartr )

plt.plot(x,fx)
plt.show()

La gráfica del cable es: