2Eva_IIT2011_T1_MN Volumen de lago

2da Evaluación II Término 2011-2012. 31/Enero/2012. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Un lago tiene la forma aproximadamente rectangular de 200 m x 400 m.

Se ha trazado un cuadriculado y se ha medido la profundidad en metros en cada cuadrícula de la malla como se

 y\x  0 100 200 300 400
 0  0  0  4  6  0
 50  0  3  5  7  3
 100  1  5  6  9  5
 150  0  2  3  5  1
 200  0  0  1  2  0

con todos los 25 datos de la tabla, estime el volumen aproximado de agua.

Utilice la fórmula de Simpson en ambas direcciones.


profundidad= [[ 0, 0, 4, 6, 0],
              [ 0, 3, 5, 7, 3],
              [ 1, 5, 6, 9, 5],
              [ 0, 2, 3, 5, 1],
              [ 0, 0, 1, 2, 0]]
x = [ 0, 100, 200, 300, 400]
y = [ 0,  50, 100, 150, 200]

2Eva_IIT2011_T3 EDP Parabólica, explícito

2da Evaluación II Término 2011-2011. 31/Enero/2012. ICM00158

Tema 3. Aproxime la solución de la ecuación diferencial parcial:

\frac{\delta u}{\delta t} - \frac{\delta^2 u}{\delta x^2} =2

t> 0 , 0≤ x ≤ 1

\begin{cases} u(0,t) = u(1,t) = 0, & t\gt0 \\u(x,0) = \sin (\pi x) + x(1-x) \end{cases}

Con h= 0.25 y k=0.04, realizar solo dos iteraciones en el tiempo (j=1,2) .

Indicación: Para establecer el algoritmo, utilice la fórmula progresiva para la primera derivada.

2Eva_IIT2011_T2 EDO Valor inicial

2da Evaluación II Término 2011-2011. 31/Enero/2012. ICM00158

Tema 2. Resolcer el problema de valor inicial:

\frac{\delta y}{\delta x} -\frac{y}{x} = xe^x y(1) = e-1, 1\leq x \leq 3

a. Escribir el algoritmo de Runge-Kutta de cuarto orden para la función específica f(x,y).

b. Escribir una tabla de resultados, con h=0.2

2Eva_IT2011_T3_MN Aproxime integral

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 3. Con respecto a los datos del Tema 2, aproxime la integral de g(x) con el método de la cuadratura de Gauss de dos términos usando n = 1, 2, 3 subintervalos.

Con éstos resultados estime la precisión de la respuesta del integral.

Previamente debe usar los datos para aproximar g(x) mediante un polinomio de interpolación.

2Eva_IT2011_T2_MN Aproxime integral

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 2. Sea la función y = f(x), 0≤x≤2, con los nodos xi y los valores f( xi ), como se indica:

 x  0.0 0.5 1.0 1.5 2.0
 y=f(x)  0.0 0.8 0.9 0.7 0.3

Se requiere evaluar la siguiente integral relacionada con los datos dados:

A = \int_0^2 g(x) \delta x = \int_0^2 \frac{1}{1+y'} \delta x

Aproxime la integral de g(x) con el método de Simpson 1/3, con n=4 subintervalos.

Previamente obtenga los puntos de g(x) aproximando el valor de la derivada y’ con una fórmula de orden 2.

Estime el error en la aproximación de la derivada.


xi = [ 0.0, 0.5, 1.0, 1.5, 2.0] 
yi = [ 0.0, 0.8, 0.9, 0.7, 0.3]

2Eva_IT2011_T1_MN Ganancias anual

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 1. La siguiente tabla indica la ganancia neta g, medida en millones de dólares, de una empresa multinacional con respeto al tiempo t medido en años.

t  1 2 4 5
g 6.4 6.2 7.4  7.2

a. Encuentre el polinomio de interpolación que incluye a los cuatro puntos. Trace el gráfico aproximado de los puntos y del polinomio.

b. Con el polinomio encuentre la ganancia cuando t=3

c. Con el polinomio enuentre t cuando la ganancia fué de 7.0 millones de dólares.

d. Con el polinomio encuentre el monto y el tiempo correspondientes a la mayor ganancia.


t = [ 1  , 2  , 4  , 5  ]
g = [ 6.4, 6.2, 7.4, 7.2]

2Eva_IT2011_T3 Valor inicial Runge-Kutta 4to orden dy/dx

2da Evaluación I Término 2011-2012. 30/Agosto/2011. ICM00158

Tema 3. Resolver el siguiente problema de valor inicial, usando el método de Runge-Kutta de cuarto orden:

x\frac{\delta y}{\delta x} + 2y = \frac{\sin (x)}{x} y(2) =1 , h = \frac{1}{10} 2\leq x \leq 3

a. Escribir el algoritmo para la función f(x, y(x)) específica.

b. Presentar la tabla de resultados.

Nota: Todos los temas tienen igual valor.

2Eva_IT2011_T2 EDO Valor de frontera

2da Evaluación I Término 2011-2012. 30/Agosto/2011. ICM00158

Tema 2. Resolver el siguiente problema de valor de frontera:

y'' - \frac{1}{1+x^2} y'- e^x y = \cos (x) y(0) = 1, y(1) = -1

con h = 1/4

2Eva_IT2011_T1 Integral con Simpson

2da Evaluación I Término 2011-2012. 30/Agosto/2011. ICM00158

Tema 1. Dada la integral

\int_0^1 \frac{a^x}{(x-1)^{2/5}} \delta x

Determine:
a. Si la integral converge, justifique adecuadamente

b. Su valor aproximado, en caso de que la integral converja, usando Simpson compuesta con n=4