8.1 Regresión vs interpolación

Referencia: Chapra 17.1 p 466. Burden 8.1 p498

Cuando los datos de un experimento presentan variaciones o errores sustanciales respecto al modelo matemático, la interpolación polinomial presentada en la Unidad 4 es inapropiada para predecir valores intermedios.

En el ejemplo de Chapra 17.1 p470, se presentan los datos de un experimento mostados en la imagen y la siguiente tabla:

xi = [1,   2,   3,  4,  5,   6, 7]
yi = [0.5, 2.5, 2., 4., 3.5, 6, 5.5]

Un polinomio de interpolación, por ejemplo de Lagrange de grado 6 pasará por todos los puntos, pero oscilando.

Una función de aproximación que se ajuste a la tendencia general, que no necesariamente pasa por los puntos de muestra puede ser una mejor respuesta. Se busca una «curva» que minimice las diferencias entre los puntos y la curva, llamada regresión por mínimos cuadrados.


Descripción con la media yi

Considere una aproximación para la relación entre los puntos xi, yi como un polinomio, grado 0 que sería la media de yi. Para este caso, los errores se presentan en la gráfica:

Otra forma sería aproximar el comportamiento de los datos es usar un polinomio de grado 1. En la gráfica se pueden observar que para los mismos puntos el error disminuye considerablemente.

El polinomio de grado 1 recibe el nombre de regresión por mínimos cuadrados, que se desarrolla en la siguiente sección.

Instrucciones Python

# representación con la media
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
xi = [1,   2,   3,  4,  5,   6, 7]
yi = [0.5, 2.5, 2., 4., 3.5, 6, 5.5]

# PROCEDIMIENTO
xi = np.array(xi,dtype=float)
yi = np.array(yi,dtype=float)
n = len(xi)

xm = np.mean(xi)
ym = np.mean(yi)

# SALIDA
print('ymedia = ', ym)

# grafica
plt.plot(xi,yi,'o',label='(xi,yi)')
plt.stem(xi,yi,bottom=ym, linefmt = '--')
plt.xlabel('xi')
plt.ylabel('yi')
plt.legend()
plt.show()

Instrucciones Python – compara interpolación y regresión.

Para ilustrar el asunto y para comparar los resultados se usa Python, tanto para interpolación y mínimos cuadrados usando las librerías disponibles. Luego se desarrolla el algoritmo paso a paso.

# mínimos cuadrados
import numpy as np
import scipy.interpolate as sci
import matplotlib.pyplot as plt

# INGRESO
xi = [1,   2,   3,  4,  5,   6, 7]
yi = [0.5, 2.5, 2., 4., 3.5, 6, 5.5]

# PROCEDIMIENTO
xi = np.array(xi)
yi = np.array(yi)
n = len(xi)

# polinomio Lagrange
px = sci.lagrange(xi,yi)
xj = np.linspace(min(xi),max(xi),100)
pj = px(xj)

# mínimos cuadrados
A = np.vstack([xi, np.ones(n)]).T
[m0, b0] = np.linalg.lstsq(A, yi, rcond=None)[0]
fx = lambda x: m0*(x)+b0
fi = fx(xi)

# ajusta límites
ymin = np.min([np.min(pj),np.min(fi)])
ymax = np.max([np.max(pj),np.max(fi)])

# SALIDA
plt.subplot(121)
plt.plot(xi,yi,'o',label='(xi,yi)')
plt.plot(xj,pj,label='P(x) Lagrange')
plt.ylim(ymin,ymax)
plt.xlabel('xi')
plt.ylabel('yi')
plt.title('Interpolación Lagrange')

plt.subplot(122)
plt.plot(xi,yi,'o',label='(xi,yi)')
plt.plot(xi,fi,label='f(x)')
plt.ylim(ymin,ymax)
plt.xlabel('xi')
plt.title('Mínimos cuadrados')

plt.show()