3Eva_IT2008_T1 Runge-Kutta 4to orden dy/dx

3ra Evaluación I Término 2008-2009. 16/Septiembre/2008. ICM00158

Tema 1. Resolver la siguiente ecuación diferencial usando el método de Runge-Kutta de cuarto orden:

x\frac{\delta y}{\delta x} + xy = 1-y y(1) = 0

a. Escriba la función f(t,w) para la ecuación dada

b. Escriba el algoritmo para la i-ésima iteración con la función definida en el literal a.

c. Escriba la tabla de resultados para h = 0.2 e i = 0, 4.

2Eva_IIT2008_T3_MN EDO no lineal

2da Evaluación II Término 2008-2009. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) Se tiene la siguiente ecuación no lineal con derivadas:

y'' +y'+y = \ln (x) 1\leq x \leq 3, y(1)=0, y(3) =1

Se requiere determinar la solución de ésta ecuación como la función y(x) .

Siga el siguiente procedimiento para obtener tres puntos de ésta función y(x) para los valores de x=1.5, 2.0 y 2.5

a. Sustituya las derivadas por aproximaciones en un punto i. También exprese las variables x,y en el punto i. Escriba la ecuación resultante, la cual se denomina ecuación de diferencias.

b. Evalúe la ecuación de diferencias en cada uno de los tres puntos xi, i = 1, 2, 3 en los que se desea concocer yi.
Se obtendrá un sistema de ecuaciones lineales en el que las incógnitas son los tres valores de yi.
Escriba el sistema lineal resultante.

c. Realice dos iteraciones con el método de Gauss-Seidel para resolver el sistema de ecuaciones. Comience con los tres valores iniciales iguales a 0.5

d. Calcule la norma del error con los valores obtenidos en las dos iteraciones.
¿Se puede predecir que converge?
¿Se puede asegurar que converge?
Justifique sus respuestas.

2Eva_IIT2007_T3_AN Circuito RL

2da Evaluación II Término 2007-2008. 12/Febrero/2008. Análisis Numérico

Tema 3. En un circuito con un voltaje E(t) y una inductancia L, la primera ley de Kirchoff da la siguiente relación:

E(t) = L \frac{\delta i}{\delta t} + Ri

Donde R es la resistencia del circuito e i es la corriente.

Con los datos de la tabla aproxime el voltaje E(t) con inductancia L=0.98 Henrios y resistencia R=0.142 Ohmios, para los valores de tiempo dados.

t 1.00 1.01 1.02 1.03 1.04
i 3.10 3.12 3.14 3.18 3.20

t = [ 1.00, 1.01, 1.02, 1.03, 1.04]
i = [ 3.10, 3.12, 3.14, 3.18, 3.20]

2Eva_IIT2007_T2_AN Lanzamiento vertical proyectil

2da Evaluación II Término 2007-2008. 12/Febrero/2008. Análisis Numérico

Tema 2. Un proyectil de masa = 0.11 Kg es lanzado verticalmente hacia arriba con una velocidad inicial V(0) = 8 m/s.

El proyectil disminuye su velocidad por efecto de la fuerza de gravedad
Fg = -mg
y por la resistencia del aire
Fr = kv|v|
donde g = 9.8 m/s2 y k = 0.002 Kg/m.

La ecuación diferencial de la velocidad está dada por:

m \frac{\delta v}{\delta t} = -mg - kv|v|

a. Calcule la velocidad con el método de Runge-Kutta de cuarto orden para

t = 0.2, 0.4, … , 1.0 segundos.

b. Calcule en que tiempo el proyectil alcanzará la altura máxima.


Referencias:

3Eva_IIT2007_T3 EDO Taylor orden 2

3ra Evaluación II Término 2007-2008. 26/Febrero/2008. ICM00158

Tema 3. Resolver la ecuación diferencial usando el método de Taylor de orden dos:

y'= 1 +\frac{y}{t} + \Big(\frac{y}{t}\Big) ^2 1\leq t\leq 2 y(1)=0, h=0.2

No olvide escribir todos los pasos necesarios para establecer el algoritmo.

2Eva_IIT2010_T1 Problema valor inicial

2da Evaluación II Término 2010-2011. 1/Febrero/2011. ICM00158

Tema 1. Resolver el siguiente problema de valor inicial:

y'+ \frac{2}{t}y = \frac{\cos (t)}{t^2} y(\pi)=0, t\gt 0

a. Determinar f(t,y)

b. Escribir el algoritmo de Runge-Kutta de 4to orden para la función definida en el literal a.

c. Presentar la tabla de resultados para el tamaño de paso h=0.2, con i = [0,9]

2Eva_IT2010_T2 Movimiento angular

2da Evaluación I Término 2010-2011. 31/Agosto/2010. ICM00158

Tema 2. La ecuación de un movimiento angular está dada por

y'' + 10 \sin (y) =0 0\leq t \leq 1 y(0)=0, y'(0)=0.1

Empleando el método de Runge-Kutta de 4to orden generalizado y un paso de 0.25, aproximar la solución de la ecuación en t=0.50


Referencia:  Chapra 28.4 p842 pdf 866

https://nitanperdida.com/2017/12/24/banos-y-el-columpio-del-fin-del-mundo/
BAÑOS DE AGUA SANTA Y EL COLUMPIO DEL FIN DEL MUNDO