2Eva_IT2011_T3_MN Aproxime integral

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 3. Con respecto a los datos del Tema 2, aproxime la integral de g(x) con el método de la cuadratura de Gauss de dos términos usando n = 1, 2, 3 subintervalos.

Con éstos resultados estime la precisión de la respuesta del integral.

Previamente debe usar los datos para aproximar g(x) mediante un polinomio de interpolación.

2Eva_IT2011_T1_MN Ganancias anual

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 1. La siguiente tabla indica la ganancia neta g, medida en millones de dólares, de una empresa multinacional con respeto al tiempo t medido en años.

t  1 2 4 5
g 6.4 6.2 7.4  7.2

a. Encuentre el polinomio de interpolación que incluye a los cuatro puntos. Trace el gráfico aproximado de los puntos y del polinomio.

b. Con el polinomio encuentre la ganancia cuando t=3

c. Con el polinomio enuentre t cuando la ganancia fué de 7.0 millones de dólares.

d. Con el polinomio encuentre el monto y el tiempo correspondientes a la mayor ganancia.


t = [ 1  , 2  , 4  , 5  ]
g = [ 6.4, 6.2, 7.4, 7.2]

3Eva_IIT2010_T1 Trazador cúbico sujeto

3ra Evaluación II Término 2010-2011. 15/Febrero/2011. ICM00158

Tema 1. Dados los valores de una función y sus derivadas en los extremos,

f(0)= 1.5
f(1/2) = 1.37758
f(1) = 1.0403

f'(0) = 0
f'(1) = – 0.84147

determinar el trazador cúbico sujeto y luego aproximar la función en los puntos x=0.2 y x=0.8


fxi = [[  0, 1.5    ],
       [1/2, 1.37758],
       [  1, 1.0403 ]]

3Eva_IIT2009_T1 Ladera submarina

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 1. (25 puntos) Para aproximar la profundidad de una ladera submarina se han hecho mediciones, las cuales relacionan la profundidad de la ladera, expresada en m, con la distancia respecto a la orilla, expresada en km.

Ladera submarina

Empleando los datos que se dan a continuación, construya el trazador cúbico natural para aproximar la profundidad de la ladera a 1.5 km respecto a la orilla.

Distancia a orilla 0 1 2 3
Profundidad ladera 1 170 235 320

Escriba el sistema de ecuaciones del cual se obtienen los valores de ci.


distancia = [ 0, 1, 2, 3]
profundidad = [ 1, 170, 235, 320]

Referencias:
EEUU vierte arena en playas de Miami Beach erosionadas por el cambio climático | AFP

https://www.youtube.com/watch?v=BbYVuXT_MEk

3Eva_IT2009_T1 Trazador cúbico fijo

3ra Evaluación I Término 2009-2010. 15/Septiembre/2009. ICM00158

Tema 1.  (25 puntos) Dado los valores de una función, construir el trazador cúbico fijo.

f(0) = 1,
f(0.25) = 1.14012
f(0.5) = 1.32436
f(0.75) = 1.5585

y con las derivadas, f'(0) = 0.5, f'(0.75) = 1.0585

a. Establecer el sistema para determinar los valores de ci

b. Aproximar f(0.15) y f(0.6)

Rúbrica: Sistema de ecuaciones (7.5 puntos), polinómios cúbicos (10 puntos), aproximación correcta de los puntos (7.5 puntos)


datos = [[0, 1],
         [0.25, 1.14012],
         [0.5 , 1.32436],
         [0.75, 1.5585 ]]

3Eva_IIT2008_T1_MN Entrenamiento en empresa

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM02188 Métodos Numéricos

Tema 1. (40 puntos) En los siguientes datos (x, f(x)), x representa el tiempo en horas de entrenamiento que realizaron 4 empleados de una empresa y f(x) representa su eficiencia actual para realizar cierta tarea (tiempo en minutos):

(0.0, 4.0), (2.0, 3.6), (4.0, 2.8), (6.0, 2.5)

a. Use el polinomio de interpolación de tercer grado para estimar la eficiencia (tiempo en minutos) si el entrenamiento es 5 horas.

b. Use el polinomio de interpolación de tercer grado para estimar el tiempo de entrenamiento que se requiere para que la eficiencia sea exactamente 3.0 minutos.


datos = [[0.0, 4.0], 
         [2.0, 3.6], 
         [4.0, 2.8], 
         [6.0, 2.5]]

3Eva_IIT2008_T2 Potencia de tracción

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM00158


Tema 2. Un servomecanismo presenta la potencia de tracción en función del ángulo de elevación como se indica en la tabla.

a. Construya el trazador cúbico natural

b. Aproxime la potencia cuando el ángulo es 35 grados, y determine el error de interpolación.

Elevación (grados)  20 30 40 50 60
Potencia (Joules/s) 34,202 50,000 64,279 76,604 86,603

elevacion = [ 20, 30, 40, 50, 60]
potencia  = [34202, 50000, 64279, 76604, 86603]

Referencia:
COMO HACEN LOS BRAZOS ROBOTICOS Discovery MAX

3Eva_IT2008_T2 Trazador cúbico

3ra Evaluación I Término 2008-2009. 16/Septiembre/2008. ICM00158

Tema 2. Dados los siguientes datos:

f(0) = 1, f\Big(\frac{\pi}{6}\Big) =1.5, f\Big(\frac{\pi}{3}\Big) =1.866 f\Big(\frac{\pi}{2}\Big) =2, f'(0)=1, f'\Big(\frac{\pi}{2}\Big) =0

Construir el trazador cúbico fijo:

a. Establecer el sistema de ecuaciones para obtener lso valores de c

b. Con los valores de c, determinar b y d.

c. Escribir los polinomios con sus respectivos intervalos.

2Eva_IIT2008_T2_MN Emisiones CO2

2da Evaluación II Término 2008-2009. ICM02188 Métodos Numéricos 

Tema 2. (40 puntos) Se han registrado seis mediciones de la emisión en Kg de CO2 en una fábrica entre la 1 y las 3 de la tarde:

t hora  1.0  1.4 1.8  2.2 2.6
emisión[t] Kg  2.2874 5.5947 10.6046 16.0527 18.0455

a. Tabule las diferencias finitas hacia adelante

b. Con un polinomio de segundo grado, calcule la cantidad de CO2 que se emitió a las 2 de la tarde. Encuentre el error en el resultado obtenido

c. Usando una fórmula de segundo orden, calcule la velocidad (emisión‘(t)) con la que está emitiéndose la cantidad de CO2 cuando t=1.8 horas. Estime el error en el resultado obtenido.

d. Usando una fórmula de segundo orden, calcule la aceleración (emisión»(t)) con la que está emitiéndose la cantidad de CO2 cuando t=1.8 horas. Estime el error en el resultado obtenido.

e. Usando una aproximación lineal entre los datos de las mediciones, calcule la cantidad total de CO2 que se emitió entre la una de la tarde y las tres de la tarde (fórmula de los trapecios). Estime el error en el resultado obtenido.

f. Usando una aproximación parabólica entre los datos de las mediciones calcule la cantidad total de CO2 que se emitió entre la una de la tarde y las tres de la tarde (fórmula de Simpson). Estime el error en el resultado obtenido.


t    =    [ 1.0,    1.4,     1.8,     2.2,     2.6   ]
emision = [ 2.2874, 5.5947, 10.6046, 16.0527, 18.0455]

2Eva_IIT2008_T1_MN Costo anual de máquina mínimo

2da Evaluación II Término 2008-2009. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) La siguiente tabla presenta el costo anual C(x) de una máquina en función de los años de vida x

 x (años) 5 10 15 20
 C[x] ($) 10300 8700 9600 12300

a. Use todos los datos para obtener un polinomio para aproximar el costo anual en función de x

b. Con el polinomio obtenido encuentre el tiempo de vida aproximado para el cual el costo anual es mínimo.


x = [    5,   10,   15,    20]
C = [10300, 8700, 9600, 12300]