1Eva_IIT2010_T1 Aproximar con polinomio

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 1. La función de variable real f(x) será aproximada con el polinomio de segundo grado P(x) que incluye los tres puntos f(0), f(π/2), f(π).

f(x) = e^x \cos (x) +1 0\leq x \leq \pi

Encuentre la magnitud del mayor error E(x) = f(x) -P(x), que se produciría al usar esta aproximación. Resuelva la ecuación no lineal resultante con la fórmula de Newton con un error máximo de 0.0001.

3Eva_IIT2019_T4 completar polinomio de interpolación

3ra Evaluación II Término 2019-2020. 11/Febrero/2020. MATG1013

Tema 4. (25 puntos) Una función f(x) en el intervalo [0,1] está definida por el trazador cúbico natural S(x):

S_0(x) = 1 + 1.1186x + 0.6938 x^3

 0.0 ≤ x ≤ 0.4

S_1(x) = 1.4918 + 1.4516(x-0.4) + c(x-0.4)^2 +d(x-0.4)^3

0.4 ≤ x ≤ 0.6

S_2(x) = 1.8221 + 1.8848(x-0.6) + +1.3336(x-0.6)^2 - 1.1113(x-0.6)^3

0.6 ≤ x ≤ 1.0

Sin embargo, el papel donde se registraron los polinomios sufrió un percance que no permite leer algunos valores para S1(x).

a) Realice las operaciones necesarias para encontrar os valores: c, d
b) Use el método de Newton para resolver la ecuación S(x) = 1.6

Rúbrica: plantear las condiciones(10 puntos), resolver el sistema (5 puntos), literal b (10 puntos)

3Eva_IIT2019_T1 Lanzamiento de Cohete

3ra Evaluación II Término 2019-2020. 11/Febrero/2020. MATG1013

Tema 1. (25 Puntos)
En el lanzamiento de un cohete se midieron las alturas alcanzadas a intervalos regulares de tiempo, mostradas en la siguiente tabla:

t s 0 25 50 75 100 125
y(t) Km 0 32 58 78 92 100

Usando tres puntos, se requiere obtener el polinomio de grado 2 que describe la función de altura y(t) a partir de los datos obtenidos, usando interpolación

a) Realice la tabla de diferencias finitas
b) Plantee el polinomio de interpolación con diferencias finitas avanzadas
c) A partir del polinomio obtenido, escriba las funciones de velocidad y’(t)
y aceleración y’’(t) en cada punto de la tabla

Rúbrica: literal a (5 puntos) literal b (5 puntos), literal c (15 puntos)

Referencias: Batalla por la luna, el programa Apolo.History Latinoamérica

1Eva_IIT2019_T2 Proceso Termodinámico

1ra Evaluación II Término 2019-2020. 26/Noviembre/2019. MATG1013

Tema 2. (20 puntos).  Para simular la disminución de la temperatura en un proceso termodinámico,
un algoritmo evolutivo necesita usar un polinomio para aproximar en el intervalo [0,4] la función f con regla de correspondencia

f(x)=e^{-0.5x}

con constante k = 0.5

Para construir el mencionado polinomio, considere la tabla:

x 0 1 2 3 4
f(x) f(0) f(1) f(2) f(3) f(4)

a) Aplique interpolación polinomial y aproxime el valor de f(2.4) usando un polinomio de grado 2.

b) Encuentre una cota superior para el error de interpolación en la aproximación de f(1.7)}

Rúbrica: literal a (15 puntos), literal b (5 puntos)

3Eva_IT2019_T2 Integral con interpolación

3ra Evaluación I Término 2019-2020. 10/Septiembre/2019. MATG1013

Tema 2. (40 Puntos) Construya un polinomio que aproxime a

f(x) = sin(\pi x)

usando los puntos x=0, π/4, π/2 y aproxime la integral de 0 a π/2.

a. Realice la interpolación mediante el método de trazador cúbico fijo

b. Integre usando el método de cuadratura de Gauss

c. Estime el error para el ejercicio.

Rúbrica: Bosquejo de gráficas (5 puntos), literal a, planteo de fórmulas (5 puntos), calcula los parámetros (10 puntos), literal b (15 puntos), literal c (5 puntos).

1Eva_IT2019_T1 Oxígeno y temperatura en agua

1ra Evaluación I Término 2019-2020. 2/Julio/2019. MATG1013

Tema 1. (40 puntos) La concentración de oxígeno disuelto a nivel del mar en agua dulce es función de la temperatura o(T)

T (℃) 0 8 16 24 32 40
o (mg/L) 14.6 11.5 9.9 8.4 7.3 6.4

a) Con los siguientes datos, encuentre un modelo polinómico de grado 3 y estime la concentración para la temperatura de 15 grados y estime el error.

b) Usando el polinomio del literal a, aproxime la derivada de la concentración de oxígeno en función de la temperatura en T = 16 grados.

c) Usando el polinomio del literal a y el método de la bisección encuentre T cuando o=9 mg/L, con una tolerancia de 10-3

Rúbrica: literal a, plantear polinomio (15 puntos), interpolar (5 puntos), literal b obtener derivada (5puntos), evaluar derivada (5 puntos) literal c, selección de rángo de búsqueda (3 puntos) desarrollo de al menos tres iteraciones (7 puntos)


Nota: Todos los temas deben mostrar evidencia del desarrollo del método numérico planteado.

tm = [0.,8,16,24,32,40]
ox = [14.6,11.5,9.9,8.4,7.3,6.4]

Referencia: Chapra 5ed, problema 19.15 p576, pdf600.  1Eva_IIT2014_T3 Oxigeno y temperatura en mar,
http://blog.espol.edu.ec/analisisnumerico/1eva_iit2014_t3-oxigeno-y-temperatura-en-mar/.

La «gigantesca» reserva de agua dulce hallada bajo el océano Atlántico (y qué esperanzas brinda para las zonas áridas del planeta). eluniverso.com 25/junio/2019.
https://www.eluniverso.com/noticias/2019/06/25/nota/7394484/gigantesca-reserva-agua-dulce-hallada-bajo-oceano-atlantico-que

 

 

1Eva_IIT2018_T3 Interpolar con sistema de ecuaciones

1ra Evaluación II Término 2018-2019. 10/Noviembre/2018. MATG1013

Tema 3. Encuentre el polinomio:

p_2(x) = b_0 + b_1x + b_2 x^2

tal que se ajuste a tres puntos de y(x) para x = 1.0, 1.5 y 2.1 de la tabla presentada.
Resuelva usando un sistema de ecuaciones.

x 1.0 1.1 1.3 1.5 1.9 2.1
y(x) 1.84 1.90 2.10 2.28 2.91 3.28

a) Plantee el sistema Ax=B resultante con las variables b0, b1, b2

b) Calcule ||Tj||  y comente

c) Encuentre el número de condición K(A) =||A||||A-1||  y comente

d) Resuelva el sistema con el método de eliminación de Gauss

1Eva_IIT2018_T1 Interpolar velocidad del paracaidista

1ra Evaluación II Término 2018-2019. 10/Noviembre/2018. MATG1013

Tema 1. Un paracaidista con masa de 75 Kg salta de un globo aerostático fijo.https://www.dreamstime.com/stock-photo-skydiving-formation-group-people-image62015024

La velocidad del paracaidista se registra como se indica en la tabla.

t [s] 0 2 4 6 8
v(t) [m/s] 0.0 16.40 27.77 35.64 41.10

a) Construya un polinomio P2(t) para 0 ≤ t ≤ 8

b) Mediante integración encuentre la distancia recorrida en el tiempo de 0 a 8 segundos.


t = [0.0, 2, 4, 6, 8]
v = [0.0, 16.40, 27.77, 35.64, 41.10]

3Eva_IT2018_T2 Drenaje de estanque

3ra Evaluación I Término 2018-2019. 11/Septiembre/2018. MATG1013

Tema 2. (40 puntos) Un estanque se drena a través de un tubo como se observa en la figura.

Con suposiciones simplificadoras, la ecuación diferencial siguiente describe cómo cambia la profundidad con el tiempo:

\frac{dh}{dt} = -\frac{\pi d^2}{4A(h)}\sqrt{2g(h+e)}

 
Donde:
h = profundidad (m),
t = tiempo (s),
d = diámetro del tubo (m),
A(h) = área de la superficie del estanque como función de la profundidad (m2),
g = constante gravitacional (9,81 m/s2) y
e es la profundidad de salida del tubo por debajo del fondo del estanque (m).

Con base en la tabla siguiente de área-profundidad, resuelva esta ecuación diferencial para determinar cuánto tiempo tomaría que el estanque se vacie, dado que h(0) = 6 m, d = 0.25 m, e = 0.3 m.

h 6 5 4 3 2 1 0
A(h) 1.17 0.97 0.67 0.45 0.32 0.18 0.02

a) Con las profundidades 0, 2, 4, 6, encuentre un modelo de trazador cúbico natural para modelar el área A(h) y calcule el error en h = 5 m

b) Use el método de Taylor de segundo orden con dt=1 s para aproximar el tiempo en que la profundidad es 3 m.

Rúbrica: literal a (20 puntos), literal b (20 puntos)


hi = np.array([6, 5, 4, 3, 2, 1, 0])
Ai = np.array([1.17, 0.97, 0.67, 0.45, 0.32, 0.18, 0.02])

Referencia: Chapra Ejercicio 28.24 p849, pdf873

Video: Superestructuras: la presa Hoover

1Eva_IT2018_T4 El gol imposible

1ra Evaluación I Término 2018-2019. 26/Junio/2018. MATG1013

Tema 4. “El gol que desafió a la física”. El 3 de junio de 1997, durante el partido de Brasil vs Francia, el brasileño Roberto Carlos ubicó la pelota a 35 metros del arco del Francés Fabien Barthez para rematar un tiro libre. Retrocedió 18 pasos, y luego sacó un zurdazo brutal, mágico, irreal, de ficción, para vencer en un segundo y fracción el arco del portero que al año siguiente se coronaría campeón del mundo.

Se obtuvieron los siguientes datos de videos y fotografías del suceso.

t 0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20
x(t) 0.00 0.50 1.00 1.50 1.80 2.00 1.90 1.10 0.30
y(t) 0.00 4.44 8.88 13.31 17.75 22.19 26.63 31.06 35.50
z(t) 0.00 0.81 1.40 1.77 1.91 1.84 1.55 1.03 0.30

Para el estudio de la trayectoria del balón se requieren las funciones que la describen en los ejes cartesianos.

a) Use interpolación con t = 0, 0.3, 0.6, 0.9 aproximar la trayectoria z(t) y encuentre t donde la altura es máxima.

b) Determine la altura ‘z’ del balón cuando cruzó la barrera. La barrera se ubica a y = 9 m de la posición inicial del balón.

c) Determine la desviación máxima (dx/dt=0) que hace que el gol sea considerado como “un desafío a la física”.

Rúbrica: literal a (10 puntos), literal b (7 puntos), literal c (8 puntos)

Referencias: La ciencia del Gol (1’49» a 2’50») video de Discovery Channel, .
El gol ‘imposible’ de Roberto Carlos a Francia cumple 20 años. El Comercio, Perú. 03.06.2017.
Científicos explican gol de tiro libre de Roberto Carlos. ElUniverso.com 3 de septiembre, 2010.


ti = [0.00, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1.05, 1.20]
xi = [0.00, 0.50, 1.00, 1.50, 1.80, 2.00, 1.90, 1.10, 0.30]
yi = [0.00, 4.44, 8.88,13.31,17.75,22.19,26.63,31.06,35.50]
zi = [0.00, 0.81, 1.40, 1.77, 1.91, 1.84, 1.55, 1.03, 0.30]