s3Eva_IT2018_T1 Intersección de dos círculos

Ejercicio: 3Eva_IT2018_T1 Intersección de dos círculos

Para la solución se presentan dos secciones:

1. Solución particular de intersección de círculos

2. Solución General de intersección de círculos

_


1. Solución Particular de intersección de círculos

La solución particular se enfoca en el enunciado del ejercicio presentado

Literal a

Se grafica las funciones usando Python, para encontrar el rango de búsqueda de raíces.

De la gráfica se usa el ‘zoom’ y se puede aproximar los valores para la intersección de las curvas estimando raices en x=1.80 y x=3.56

Desarrollo numérico

Se usan las ecuaciones para encontrar la diferencia entre las funciones.

(x-4)^2 + (y-4)^2 = 5 x^2 + y^2 = 16

Se despeja la variable y para la primera ecuación:

(y-4)^2 = 5 - (x-4)^2 y-4 = \sqrt{5 - (x-4)^2} f(x) = y = \sqrt{5 - (x-4)^2} + 4

la segunda ecuacion se transforma en

x^2 + y^2 = 16 y^2 = 16 - x^2 g(x) = y = \sqrt{16 - x^2}

La intersección se obtiene restando las ecuaciones, para f(x) se usa la parte inferior del circulo y para g(x) la parte superior de circulo.

Para buscar las raices se analiza en el rango de existencia entre las dos funciones:

[-4,4]\text{ y } [4 -\sqrt{5} ,4 + \sqrt{5}] [-4,4] \text{ y } [1.7639 , 6.2360]

por lo que la diferencia existe en el rango:

[1.7639 ,4] \text{diferencia}(x) = f(x)-g(x)

que es el que se usa para el literal b


Literal b

Las ecuaciones para la diferencia entre las funciones son :

f_{2} (x) = -\sqrt{5-(x-4)^2}+4 g_{1} (x) = \sqrt{16-x^2}

Para el método de Newton-Raphson se requieren las derivadas:

\frac{d f_2}{dx} = \frac{x-4}{ \sqrt{5-(x-4)^2} } \frac{d g_{1}}{dx} = \frac{-x}{ \sqrt{16-x^2} }

por lo que:

\frac{d \text{diferencia}}{dx} = \frac{d f_{2}}{dx} - \frac{d g_{1}}{dx}

Usando el algoritmo con Python se obtienen las raices:

 usando Newton-Raphson
raices en:  1.80582463574 3.56917099898

Desarrollo en Python:

El desarrollo se realiza por partes, en el mismo orden del planteamiento de  los literales

# 3ra Evaluación I Término 2018
# Tema 1. Intersección de círculos
import numpy as np
import matplotlib.pyplot as plt

# literal a

fx1 = lambda x: np.sqrt(5-(x-4)**2)+4
fx2 = lambda x: -np.sqrt(5-(x-4)**2)+4
gx1 = lambda x: np.sqrt(16-x**2)
gx2 = lambda x: -np.sqrt(16-x**2)

# Rango inicial de análisis (visual)
a = -5; b = 7
muestras = 501

# PROCEDIMIENTO
# Evalua los puntos en el rango
xi = np.linspace(a,b,muestras)
fx1i = fx1(xi)
fx2i = fx2(xi)
gx1i = gx1(xi)
gx2i = gx2(xi)

# SALIDA - Gráfica
plt.plot(xi,fx1i)
plt.plot(xi,fx2i)
plt.plot(xi,gx1i)
plt.plot(xi,gx2i)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Intersección de círculos')
plt.grid()
plt.show()

# GRAFICAR las diferencias
a = 4 - np.sqrt(5)
b = 4 + np.sqrt(5)
# PROCEDIMIENTO
xi = np.linspace(a,b,muestras)
diferencia = fx2(xi) - gx1(xi)
# GRAFICA
plt.plot(xi,diferencia)
plt.axhline(0)
plt.xlabel('x')
plt.ylabel('y')
plt.title('diferencia entre círculos')
plt.grid()
plt.show()

# literal b -----------------------
def newton_raphson(funcionx, fxderiva, xi, tolera):
    # funciónx y fxderiva en forma numérica
    # xi es el punto inicial de búsqueda
    tramo = abs(2*tolera)
    while (tramo>=tolera):
        xnuevo = xi - funcionx(xi)/fxderiva(xi)
        tramo = abs(xnuevo-xi)
        xi = xnuevo
    return(xi)

funcionx = lambda x: fx2(x) - gx1(x)
fxderiva = lambda x: (x-4)/np.sqrt(5-(x-4)**2)+x/np.sqrt(16-x**2)

tolera = 0.001
xi1 = a + tolera
xi2 = 3.5

raiz1 = newton_raphson(funcionx, fxderiva, xi1, tolera)
raiz2 = newton_raphson(funcionx, fxderiva, xi2, tolera)

# SALIDA
print('\n usando Newton-Raphson')
print('raices en: ', raiz1,raiz2)

_


2. Solución General de intersección de círculos

Una solución más general de la intersección de círculos, considerada como para una actividad de mayor duración, revisa previamente si existe un cruce de áreas entre los dos círculos y estima el intervalo donde se encuentran las raíces [xa,xb].

De existir esa posibilidad, con el intervalo anterior  [xa,xb] busca por un método de búsqueda de raíces las coordenadas de la intersección de las circunferencias.

2.1 Buscar cruce de áreas entre dos círculos

El cruce de áreas entre dos círculos se determina comparando si la distancia entre la suma de los radios es mayor o igual a la distancia entre los centros de los círculos.

De cumplirse la condicion anterior, es posible encontrar las intersecciones de los círculos. El valor xa se obtiene como el mayor entre los límites x hacia la izquierda de cada círculo, mientras que xb se obtiene como el límite x hacia la derecha entre los círculos.

Lo siguiente que hay que reconocer es cuál de las partes (superior e inferior) de cada círculo es necesario usar para encontrar las intersecciones. Esta sección es necesaria puesto que la fórmula que describe el círculo contiene una raiz cuadrada que puede se positiva o negativa, generando dos segmentos en cada círculo.

Por ejemplo, partiendo de la fórmula general de un círculo con centro en [x1,y1] y radio r1:

(x-x_1)^2 + (y-y_1)^2 = r_1^2 (y-y_1)^2 = r_1^2 - (x-x_1)^2 \sqrt{(y-y_1)^2} = \sqrt{r_1^2 - (x-x_1)^2} y = \sqrt{r_1^2 - (x-x_1)^2} + y_1

Con lo que se muestra la necesidad de ídentificar para cada círculo el sector arriba y abajo que interviene para encontrar las intersecciones. El orden del sector se establece con las posibles combinaciones de:

tabla de signos en raiz cuadrada para círculo
círculo 2 abajo círculo2 arriba
círculo 1 abajo [-1,-1] [-1,1]
círculo 1 arriba [ 1,-1] [ 1,1]

El uso de cada combinación se estrablece en el vector de 1 y 0 con el siguiente orden:

sector = [ abajo1*abajo2,  abajo1*arriba2,
          arriba1*abajo2, arriba1*arriba2]

las instrucciones en Python para lo descrito se muestran como una función:

import numpy as np
import scipy.optimize as sp
def cruce2circulos(x1,y1,r1,x2,y2,r2):
    ''' Revisa intervalo de area de cruce
        entre dos círculos de centro y radio
        x1,y1,r1 // x2,y2,r2
    '''
    intersecta = []
    dx = x2 - x1
    dy = y2 - y1
    d_centros = np.sqrt(dx**2 + dy**2)
    d_cruce   = r2 + r1
    
    # los circulos se cruzan o tocan
    if d_cruce >= d_centros:

        # intervalos de cruce
        xa = np.max([x1-r1,x2-r2])
        xb = np.min([x1+r1,x2+r2])
        ya = np.max([y1-r1,y2-r2])
        yb = np.min([y1+r1,y2+r1])
        
        # cada circulo arriba, abajo
        abajo1 = 0 ; arriba1 = 0
        abajo2 = 0 ; arriba2 = 0
        if ya<=y1:
            abajo1  = 1
        if yb>=y1:
            arriba1 = 1
        if ya<=y2:
            abajo2  = 1
        if yb>=y2:
            arriba2 = 1
        sector  = [ abajo1*abajo2, abajo1*arriba2,
                   arriba1*abajo2, arriba1*arriba2]
        uncruce = [xa,xb,ya,yb,sector]
    return(uncruce)

El resultado para los círculos del ejercicio son:

>>> x1=4; y1=4; r1=np.sqrt(5)
>>> x2=0; y2=0; r2=np.sqrt(16)
>>> uncruce = cruce2circulos(x1,y1,r1,x2,y2,r2)
>>> uncruce
[1.7639320225002102, 4.0, 
 1.7639320225002102, 2.23606797749979, 
[0, 1, 0, 0]]
>>> 

2.2 Raíces como coordenadas de intersección entre dos círculos

Las coordenadas de intersección entre dos círculos se obtienen aplicando un método de búsqueda de raíces. Por ejemplo bisección, que para esta parte se usa el algoritmo de SciPy con la instrucción sp.bisect(fx,xa,xb,xtol=2e-12).

Para el caso más general, donde existen dos raíces que buscar, se divide el intervalo de busqueda [xa,xb] en dos medios segmentos [xa,xc] y [xc,xb]. Se aplica un método de búsqueda de raíces para cada subintervalo. Para minimizar errores de truncamiento, en cada busqueda de desplaza dx/10 cada xc hacia el lado que amplia el subintervalo de búsqueda.

Para el caso donde los círculos solo tienen un punto de contacto, se realiza una revisión considerando que el intervalo de búsqueda podría ser menor al valor de tolerancia del radio.

Por ejemplo, cuando la linea que une los centros de los círculos resulta paralelos al eje de las x,  adicionalmete se topan en un solo punto, el algoritmo anterior indica que se usan todos los sectores de los círculos, dando como resultado cuatro raices iguales. El caso se corrige realizando la parte de sectores solo cuando la distancia entre [xa,xb] es mayor a cero.

El resultado se presenta como los vectores raizx y raizy.

Las intrucciones en Python para esta sección se describen a continuación:

def raices2circulos(x1,y1,r1,x2,y2,r2,tolera=2e-12):
    ''' busca las intersección entre 2 circulos
        de centro y radio: x1,y1,r1 || x2,y2,r2
        revisa con cruce2circulos()
    '''
    uncruce = cruce2circulos(x1,y1,r1,x2,y2,r2)
    raizx = []; raizy = []

    # si hay cruce de circulos
    if len(uncruce)>0:
        sectores = [[-1,-1],[-1,1], 
                    [ 1,-1],[ 1,1]]
        [xa,xb,ya,yb,sector] = uncruce
        xc = (xa+xb)/2
        dx = np.abs(xb-xa)
        dy = np.abs(yb-ya)
        k = 1    # se tocan en un punto
        if dx>0: # se tocan en mas de un punto
            k = len(sector)
        for j in range(0,k,1):
            if sector[j]==1:
                s1 = sectores[j][0]
                s2 = sectores[j][1]
                fx1 = lambda x: s1*np.sqrt(r1**2-(x-x1)**2)+y1
                fx2 = lambda x: s2*np.sqrt(r2**2-(x-x2)**2)+y2
                fx  = lambda x: fx1(x)-fx2(x)
                fa = fx(xa)
                fb = fx(xb)
                raiz1 = np.nan
                raiz2 = np.nan
                
                # intervalo/2 izquierda
                xc = xc + dx/10
                fc = fx(xc)
                cambio = np.sign(fa)*np.sign(fc)
                if cambio<0:
                    raiz1 = sp.bisect(fx,xa,xc,xtol=tolera)
                    
                # intervalo/2 derecha
                xc = xc - 2*dx/10
                fc = fx(xc)
                cambio = np.sign(fc)*np.sign(fb)
                if cambio<0:
                    raiz2 = sp.bisect(fx,xc,xb,xtol=tolera)
                    
                # si hay contacto en un borde
                if dx<tolera*r1 and dy>0:
                    raiz1 = xa
                if dy<tolera*r1 and dx>0:
                    raiz1 = x1
                    
                # Añade si existe raiz
                if not(np.isnan(raiz1)):
                    raizx.append(raiz1)
                    raizy.append(fx1(raiz1))
                if not(np.isnan(raiz2)):
                    raizx.append(raiz2)
                    raizy.append(fx1(raiz2))
        raices = [raizx,raizy]
    return(raices)

El resultado del algoritmo para el ejercicio es:

>>> raices = raices2circulos(x1,y1,r1,x2,y2,r2,tolera=2e-12)
>>> raices
[[1.805829001269906, 3.569170998730207],
 [3.569170998734088, 1.8058290012706681]]
>>>

2Eva_IT2018_T4 Dragado acceso marítimo

2da Evaluación I Término 2018-2019. 28/Agosto/2018. MATG1013

Tema 4. (30 puntos) Para una sección de 500 m del acceso marítimo a los puertos de Guayaquil se requiere de un canal con:

  • profundidad mínima de 11 metros MLWS
  • ancho de 250 m

de tal foma que permita navegar buques de carga de mayor tamaño.

Dispone de las mediciones de profundidad mostradas en la tabla de batimetría:

Batimetría
yi \ xi 0 50 100 150 200 250
0 -6.79 -12.03 -10.04 -11.60 -7.24 -7.91
100 -8.85 -10.89 -8.95 -7.23 -11.42 -7.93
200 -11.90 -9.86 -9.35 -12.05 -9.38 -9.65
300 -7.30 -11.55 -10.41 -8.67 -11.84 -6.77
400 -12.17 -9.62 -7.47 -6.51 -9.02 -9.60
500 -11.90 -10.23 -10.68 -9.94 -6.76 -7.46

a) Obtenga la tabla de dragado como la diferencia entre la profundidad del canal requerido y la tabla de batimetría.

b) Estime el volumen de sedimentos a remover por la draga usando integración por el método de Simpson.

Nota: Si el fondo está más alla de los 11 metros, no se requiere la intervención de la draga.

Rúbrica: literal a (5 puntos), selección apropiada del método por rango, aplicación en un eje (15 puntos), integración en el otro eje (5 puntos), presentar las iteraciones correctamente (5 puntos)


MLWS: Nivel Medio de las Bajamares de Sicigia / nivel de referencia.
Batimetría: es el levantamiento del relieve de Superficies Subacuáticas

Referencias: El dragado del canal a los puertos de Guayaquil se anunciará el 26 de marzo del 2018. El comercio. 21/03/2018. https://www.elcomercio.com/actualidad/dragado-canal-puertos-guayaquil-jaimenebot.html.
Calado de puertos. El universo. 2013.08.16 https://www.eluniverso.com/noticias/2013/08/16/nota/1294716/calado-puertos-region-llega-138-m,
Operación Draga: https://www.youtube.com/watch?v=goDq5Ypk–c

profcanal = 11

xi = np.array([ 0.,  50., 100., 150., 200., 250.])
yi = np.array([ 0., 100., 200., 300., 400., 500.])

batimetria = [[ -6.79,-12.03,-10.04,-11.60, -7.24,-7.91],
              [ -8.85,-10.89, -8.95, -7.23,-11.42,-7.93],
              [-11.90, -9.86, -9.35,-12.05, -9.38,-9.65],
              [ -7.30,-11.55,-10.41, -8.67,-11.84,-6.77],
              [-12.17, -9.62, -7.47, -6.51, -9.02,-9.60],
              [-11.90,-10.23,-10.68, -9.94, -6.76,-7.46]]

batimetria = np.array(batimetria)

2Eva_IT2018_T3 EDP Eliptica

2da Evaluación I Término 2018-2019. 28/Agosto/2018. MATG1013

Tema 3. (25 puntos) Considere el problema con valores en la frontera:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 2(x^2+y^2) 0<x<1 0<y<1

con las condiciones de frontera en los mismos intervalos que la ecuacion diferencial:

u(x,0) = x + 1 u(0,y) = y+1 u(x,1) = x^2 + x +2 u(1,y) = y^2 + y +2

Use el método de diferencias finitas para resolver el problema tomando como tamaño de paso hx = hy = 1/3

Rúbrica: Selección de diferencias finitas divididas, gráfica del problema (5 puntos), ecuación generalizada con diferencias finitas divididas (5 puntos), Sistema de ecuaciones para los puntos desconocidos (10 puntos). Valores de los puntos desconocidos (5 puntos)

 

s2Eva_IT2018_T3 EDP Eliptica

Ejercicio: 2Eva_IT2018_T3 EDP Eliptica

Generar las ecuaciones a resolver usando diferencias finitas divididas centradas:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 2(x^2+y^2)

por facilidad se sustituye también en la forma discreta de la ecuación:

f[i,j] = f(x_i,y_j) = 2(x_{i} ^2+y_{j} ^2)
\frac{u[i-1,j]-2u[i,j]+u[i+1,j]}{\Delta x^2} + + \frac{u[i,j-1]-2u[i,j]+u[i,j+1]}{\Delta y^2} = f[i,j]
\frac{\Delta y^2}{\Delta x^2}\Big(u[i-1,j]-2u[i,j]+u[i+1,j]\Big) + + u[i,j-1]-2u[i,j]+u[i,j+1] = \Delta y^2 f[i,j]

dado que hx = hy = 1/3

\frac{\Delta y^2}{\Delta x^2} = 1
(u[i-1,j]-2u[i,j]+u[i+1,j]) + + u[i,j-1]-2u[i,j]+u[i,j+1] = = \Delta y^2 f[i,j]
u[i-1,j]-4u[i,j]+u[i+1,j] + + u[i,j-1]+u[i,j+1] = \Delta y^2 f[i,j]
4u[i,j] = u[i-1,j]+u[i+1,j] + + u[i,j-1]+u[i,j+1]-\Delta y^2 f[i,j]
u[i,j] = \frac{1}{4} \Big(u[i-1,j]+u[i+1,j] + + u[i,j-1]+u[i,j+1]-\Delta y^2 f[i,j] \Big)

La última ecuación puede ser usada de forma iterativa, para lo cual hay que definir los valores iniciales de la matriz u.

Al conocer el rango de operación para los ejes x, y, hx, hy se realizan los cálculos para:

1. Evaluar los valores para cada eje x[i], y[j]

x[i]:
[ 0.    0.33  0.67  1.  ]
y[j]:
[ 0.    0.33  0.67  1.  ]

2. Evaluar en cada punto generando una matriz f(i,j):

f[i,j]:
[[ 0.    0.22  0.89  2.  ]
 [ 0.22  0.44  1.11  2.22]
 [ 0.89  1.11  1.78  2.89]
 [ 2.    2.22  2.89  4.  ]]

3. Se evaluan las funciones indicadas para la frontera y se tiene la matriz inicial para u:

matriz inicial u[i,j]:
[[ 1.    1.33  1.67  2.  ]
 [ 1.33  0.    0.    2.44]
 [ 1.67  0.    0.    3.11]
 [ 2.    2.44  3.11  4.  ]]

con lo que se puede trabajar cada punto i,j de forma iterativa, teniendo como resultado para la matriz u:

resultado para u, iterando: 
converge =  1
[[ 1.    1.33  1.67  2.  ]
 [ 1.33  1.68  2.05  2.44]
 [ 1.67  2.05  2.53  3.11]
 [ 2.    2.44  3.11  4.  ]]

La gráfica usando una mayor resolución para tener una idea de la solución:


Los resultados se obtienen usando las siguientes instrucciones:

# 2da Evaluación I Término 2018
# Tema 3. EDP Eliptica
import numpy as np

# INGRESO
# ejes x,y
x0 = 0 ; xn = 1 ; hx = (1/3)# (1/3)/10
y0 = 0 ; yn = 1 ; hy = (1/3) # (1/3)/10
# Fronteras
fux0 = lambda x: x+1
fu0y = lambda y: y+1
fux1 = lambda x: x**2 + x + 2
fu1y = lambda y: y**2 + y + 2

fxy = lambda x,y: 2*(x**2+y**2)

# PROCEDIMIENTO
xi = np.arange(x0,xn+hx,hx)
yj = np.arange(y0,yn+hy,hy)
n = len(xi)
m = len(yj)
# funcion f[xi,yi]
fij = np.zeros(shape=(n,m), dtype = float)
for i in range(0,n,1):
    for j in range(0,m,1):
        fij[i,j]=fxy(xi[i],yj[j])
# matriz inicial u[i,j]
u = np.zeros(shape=(n,m), dtype = float)
u[:,0] = fux0(xi)
u[0,:] = fu0y(yj)
u[:,m-1] = fux1(xi)
u[n-1,:] = fu1y(yj)

uinicial = u.copy()

# Calcular de forma iterativa
maxitera = 100
tolera = 0.0001
# valor inicial de iteración
promedio = (np.max(u)+np.min(u))/2
u[1:n-1,1:m-1] = promedio
# iterar puntos interiores
itera = 0
converge = 0
erroru = 2*tolera # para calcular al menos una matriz
while not(erroru=maxitera):
    itera = itera +1
    nueva = np.copy(u)
    for i in range(1,n-1):
        for j in range(1,m-1):
            u[i,j] = (u[i-1,j]+u[i+1,j]+u[i,j-1]+u[i,j+1]-(hy**2)*fij[i,j])/4
    diferencia = nueva-u
    erroru = np.linalg.norm(np.abs(diferencia))
if (erroru<tolera):
    converge=1

# SALIDA
np.set_printoptions(precision=2)
print('x[i]:')
print(xi)
print('y[j]:')
print(yj)
print('f[i,j]:')
print(fij)
print('matriz inicial u[i,j]:')
print(uinicial)
print('resultado para u, iterando: ')
print('converge = ', converge)
print('iteraciones = ', itera)
print(u)

para obtener la gráfica se debe añadir:

# Gráfica
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

X, Y = np.meshgrid(xi, yj)
figura = plt.figure()
ax = Axes3D(figura)
U = np.transpose(u) # ajuste de índices fila es x
ax.plot_surface(X, Y, U, rstride=1, cstride=1, cmap=cm.Reds)
plt.title('EDP elíptica')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

s2Eva_IT2018_T2 Deducir Simpson 1/3

Ejercicio: 2Eva_IT2018_T2 Deducir Simpson 1/3

Para el problema, se usan los puntos:  [a,f(a)], [b,f(b)] y [c,f(c)]
por donde pasa la curva f(x) aproximada a un polinomio de grado 2, f(x) \approx p(x)

\int_a^b f(x) dx \approx \int_a^b p(x) dx p(x) = L_a f(a) + L_c f(c) + L_b f(b) \int_a^b p(x) dx = \int_a^b \Big[ L_a f(a) +L_c f(c) + L_b f(b) \Big] dx = = \int_a^b L_a f(a) dx + \int_a^b L_c f(c) dx + \int_a^b L_b f(b) dx \int_a^b p(x) dx = I_1 + I_2 + I_3

Como referencia se usa la gráfica para relacionar a, b, c y h:


Primer Integral

Para el primer integral I_1= \int_a^b L_a f(a) dx se tiene que:

L_a = \frac{(x-b)(x-c)}{(a-b)(a-c)} = \frac{(x-b)(x-c)}{(-2h)(-h)} L_a = \frac{(x-b)(x-c)}{2h^2}

se convierte en:

I_1 = \int_a^b \frac{(x-b)(x-c)}{2h^2} f(a) dx = \frac{f(a)}{2h^2} \int_a^b (x-b)(x-c)dx

Para dejar la parte del integral en función de h, a y b, teniendo que c está en la mitad de [a,b], es decir c = (a+b)/2 , se usa:

u = x-a

por lo que \frac{du}{dx}=1 y du = dx

x-c = (u+a) - \frac{a+b}{2} = u+ \frac{a-b}{2} = u - \frac{b-a}{2} x-c = u-h x-b = (u+a)-b = u-2\Big(\frac{b-a}{2}\Big) = u-2h

Se actualiza el integral de x entre [a,b]  usando u = x-a, que se convierte el rango para u en [0, b-a] que es lo mismo que [0,2h]

\int_a^b (x-b)(x-c)dx = \int_0^{2h} (u-2h)(u-h)du = = \int_0^{2h} \Big( u^2 - 2hu - uh + 2h^2 \Big) du = \int_0^{2h} \Big( u^2 - 3hu + 2h^2 \Big) du = \frac{u^3}{3}- 3h\frac{u^2}{2}+ 2h^2u \Big|_0^{2h} = \frac{(2h)^3}{3}- 3h\frac{(2h)^2}{2} + 2h^2(2h) -(0-0+0) = \frac{8h^3}{3}- 6h^3 + 4h^3 =\frac{8h^3}{3}- 2h^3 = \frac{2h^3}{3}

resultado que se usa en I1

I_1= \frac{f(a)}{2h^2}\frac{2h^3}{3} =\frac{h}{3} f(a)

que es el primer término de la fórmula general de Simpson 1/3


Segundo Integral

Para el Segundo integral I_2= \int_a^b L_c f(c) dx se tiene que:

L_c = \frac{(x-a)(x-b)}{(c-a)(c-b)} = \frac{(x-a)(x-b)}{(h)(-h)} L_c = \frac{(x-a)(x-b)}{-h^2}

se convierte en:

I_2 = \frac{f(c)}{-h^2} \int_a^b (x-a)(x-b) dx = \frac{f(c)}{-h^2} \int_0^{2h} (u)(u-2h) du

siendo:

\int_0^{2h}(u^2-2hu)du=\Big(\frac{u^3}{3}-2h\frac{u^2}{2}\Big)\Big|_0^{2h} =\frac{(2h)^3}{3}-h(2h)^2-(0-0) =\frac{8h^3}{3}-4h^3 = -\frac{4h^3}{3}

usando en I2

I_2 = \frac{f(c)}{-h^2}\Big(-\frac{4h^3}{3}) = \frac{h}{3}4f(c)

Tarea: Continuar las operaciones para y tercer integral para llegar a la fórmula general de Simpson 1/3:

I = \frac{h}{3} \Big( f(a)+4f(c) + f(b) \Big)

2Eva_IT2018_T2 Deducir Simpson 1/3

2da Evaluación I Término 2018-2019. 28/Agosto/2018. MATG1013

Tema 2. (20 puntos) Deduzca el método de Simpson 1/3


Sugerencias: Una de las formas de plantear la deducción es usando un polinomio de Lagrange con grado 2 para aproximar la función que pasa por los puntos [a,f(a)], [b,f(b)] y [c,f(c)].

Considere que los tramos tienen h tienen tamaño (b-a)/2, (c-a), (b-c)

Plantee la ecuación y sustituya los valores de los tramos por valores de h para resolver todo en función de h.

Rúbrica: Planteo del problema con polinomio (5 puntos), desarrollo del problema con integral (5 puntos c/u).

s2Eva_IT2018_T4 Dragado acceso marítimo

Ejercicio: 2Eva_IT2018_T4 Dragado acceso marítimo

a) La matriz para remover sedimentos se determina como la diferencia entre la profundidad y la matriz de batimetría.

Considere el signo de la profundidad para obtener el resultado:

matriz remover sedimentos: 
[[ 4.21  0.    0.96  0.    3.76  3.09]
 [ 2.15  0.11  2.05  3.77  0.    3.07]
 [ 0.    1.14  1.65  0.    1.62  1.35]
 [ 3.7   0.    0.59  2.33  0.    4.23]
 [ 0.    1.38  3.53  4.49  1.98  1.4 ]
 [ 0.    0.77  0.32  1.06  4.24  3.54]]

se obtiene con la instrucciones:

# 2da Evaluación I Término 2018
# Tema 4. canal acceso a Puertos de Guayaquil
import numpy as np

# INGRESO
profcanal = 11

xi = np.array([ 0.,  50., 100., 150., 200., 250.])
yi = np.array([ 0., 100., 200., 300., 400., 500.])

batimetria = [[ -6.79,-12.03,-10.04,-11.60, -7.24,-7.91],
              [ -8.85,-10.89, -8.95, -7.23,-11.42,-7.93],
              [-11.90, -9.86, -9.35,-12.05, -9.38,-9.65],
              [ -7.30,-11.55,-10.41, -8.67,-11.84,-6.77],
              [-12.17, -9.62, -7.47, -6.51, -9.02,-9.60],
              [-11.90,-10.23,-10.68, -9.94, -6.76,-7.46]]

batimetria = np.array(batimetria)
# PROCEDIMIENTO
[n,m] = np.shape(batimetria)

# Matriz remover sedimentos
remover = batimetria + profcanal
for i in range(0,n,1):
    for j in range(0,m,1):
        if remover[i,j]<0:
            remover[i,j]=0
# SALIDA
print('matriz remover sedimentos: ')
print(remover)

b) el volumen se calcula usando el algoritmo de Simpson primero por un eje, y luego con el resultado se continúa con el otro eje,

Considere que existen 6 puntos, o 5 tramos integrar en cada eje.

  • Al usar Simpson de 1/3 que usan tramos pares, faltaría integrar el último tramo.
  • En el caso de Simpson de 3/8 se requieren tramos multiplos de 3, porl que faltaría un tramo para volver a usar la fórmula.

La solución por filas se implementa usando una combinación de Simpson 3/8 para los puntos entre remover[i, 0:3] y Simpson 1/3 para los puntos entre remover[i, 3:5].

Luego se completa el integral del otro eje con el resultado anterior, aplicando el mismo método.

Se obtuvieron los siguientes resultados:

Integral en eje x: 
[ 219.1   309.83  260.44  217.75  511.21  137.85]
Volumen:  160552.083333

que se obtiene usando las instrucciones a continuación de las anteriores:

# literal b) ---------------------------
def simpson13(fi,h):
    s13 = (h/3)*(fi[0] + 4*fi[1] + fi[2])
    return(s13)
def simpson38(fi,h):
    s38 = (3*h/8)*(fi[0] + 3*fi[1] + 3*fi[2]+ fi[3])
    return(s38)

Integralx = np.zeros(n,dtype = float)

for i in range(0,n,1):
    hx = xi[1]-xi[0]
    fi = remover[i, 0:(0+4)]
    s38 = simpson38(fi,hx)
    fi = remover[i, 3:(3+3)]
    s13 = simpson13(fi,hx)
    Integralx[i] = s38 + s13

hy = yi[1] - yi[0]
fj = Integralx[0:(0+4)]
s38 = simpson38(fj,hy)
fj = Integralx[3:(3+3)]
s13 = simpson13(fj,hy)
volumen = s38 + s13

# Salida
np.set_printoptions(precision=2)
print('Integral en eje x: ')
print(Integralx)
print('Volumen: ', volumen)

Para el examen escrito, se requieren realizar al menos 3 iteraciones/ filas para encontrar el integral.

2Eva_IT2018_T1 Paracaidista wingsuit

2da Evaluación I Término 2018-2019. 28/Agosto/2018. MATG1013

Tema 1. (25 puntos) Si suponemos que el arrastre es proporcional al cuadrado de la velocidad, se puede modelar la velocidad de un objeto que cae, como un paracaidista, por medio de la ecuación diferencial ordinaria:

\frac{dv}{dt} = g - \frac{cd}{m} v^2

Donde:  http://www.elperiodicodearagon.com/noticias/sociedad/alarma-francia-cinco-muertes-verano-moda-hombres-pajaro-wingsuit_877164.html

  • v es la velocidad en m/s
  • cd es el coeficiente de arrastre de segundo orden Kg/m
  • m es la masa en Kg
  • v = \frac{dy}{dt}
  • y es la distancia que recorre en m

Resuelva para la velocidad y distancia que recorre un objeto de 90 Kg con coeficiente de arrastre de 0.225 kg/m.

Si la velocidad inicial es 0 y la altura inicial es 1 Km, determine la velocidad y posición en cada tiempo, usando un tamano de paso de 2s.

a) Plantee la solución de las ecuaciones para la velocidad y distancia usando el método de Runge-Kutta de segundo orden

b) Realice tres iteraciones

Rúbrica: literal a (15 puntos), literal b (10 puntos)


Referencia: Alarma en Francia … por moda wingsuit. 23 Agosto 2013. www.elperiodicodearagon.com.  http://www.elperiodicodearagon.com/noticias/sociedad/alarma-francia-cinco-muertes-verano-moda-hombres-pajaro-wingsuit_877164.html

s2Eva_IT2018_T1 Paracaidista wingsuit

Ejercicio: 2Eva_IT2018_T1 Paracaidista wingsuit

Plantear con: [ Runge-Kutta para f''(x) ] [ Runge-Kutta para f’(x) ]

..


a. Planteamiento con Runge-Kutta 2do Orden para Segunda derivada

La expresión:

\frac{dv}{dt} = g - \frac{cd}{m} v^2

se puede plantear sustituir la variable con v = -\frac{dy}{dt} al considerar el sentido contrario entre la velocidad al caer y la referencia de altura hacia arriba. Ver figura.

\frac{dy^2}{dt^2} = g - \frac{cd}{m} \Big( \frac{dy}{dt} \Big) ^2

Que es una EDO de 2do orden o como 2da derivada.

La solución se propone resolver de forma simultanea para t,y,v con Runge Kutta para segunda derivada donde:

f(t,y,v) = -v g(t,y,v) = g - \frac{cd}{m} v^2

Al sustituir los valores de las constantes en la ecuación como gravedad, masa e índice de arrastre se tiene:

f(t,y,v) = -v g(t,y,v) = 9.8 - \frac{0.225}{90} v^2

con las condiciones iniciales del ejercicio  t0 = 0 , y0 = 1000, v0 = 0
la velocidad se inicia con cero, si el paracaidista se deja caer desde el borde el risco, como en el video adjunto al enunciado.

Para las iteraciones, recuerde que
t se corrige con t+h (en el algoritmo era la posición para x)
y se corrige con y+K1y
v se corrige con v+K1v (en el algoritmo era la posición para z)

itera = 0

K1y = h f(t,y,v) = 2(-(0)) = 0 K1v = h g(t,y,v) = 2(9.8 - \frac{0.225}{90} (0)^2) = 19.6

..
K2y = h f(t+h, y+K1y, v + K1v) = 2(-(0 + 19.6)) = -39.2

K2v = h g(t+h, y+K1y, v + K1v) = 2(9.8 - \frac{0.225}{90} (0+19.6)^2) =17.6792

..
y_1 = y_0 + \frac{K1y+K2y}{2} = 1000 + \frac{0-39.2}{2}= 980.4

v_1 = v_0 + \frac{K1v+K2v}{2} = 0 + \frac{19.6-17.67}{2} = 18.63 t_1 =t_0 + h = 0+2 = 2

 

ti yi vi K1y K1v K2y K2v
0 1000 0 0 0 0 0
2 980.4 18.63 0 19.6 -39.2 17.6792

itera = 1

K1y = 2(-(18.63)) = -37.2792 K1v = 2(9.8 - \frac{0.225}{90} (18.63)^2) = 17.8628

..
K2y =2(-(18.6396+17.8628)) =-73.00

K2v = 2(9.8 - \frac{0.225}{90} (18.6396+17.8628)^2) =12.9378

..
y_2 =980.4 + \frac{ -37.2792+(-73.00)}{2}= 925.25

v_2 = 18.63 + \frac{17.8628+12.9378}{2} = 34.0399 t_2 =t_1 + h = 2+2 = 4
ti yi vi K1y K1v K2y K2v
0 1000 0 0 0 0 0
2 980.4 18.63 0 19.6 -39.2 17.6792
4 925.25 34.0399 -37.2792 17.8628 -73.00 12.9378

itera = 2

K1y = h f(t,y,v) = 2(-(34.0399)) = -68.0798 K1v = h g(t,y,v) = 2(9.8 - \frac{0.225}{90} (34.0399)^2) = 13.8064

..
K2y = h f(t+h, y+K1y, v + K1v) = 2(-(34.0399+13.8064)) =-95.6927

K2v = h g(t+h, y+K1y, v + K1v) = 2(9.8 - \frac{0.225}{90} (34.0399+13.8064)^2) =8.1536

..
y_2 = 925.25 + \frac{ -68.0798+(-95.6927)}{2}= 843.3716

v_2 = 34.0399 + \frac{13.8064+8.1536}{2} = 45.0199 t_2 =t_1 + h = 4+2 = 6
ti yi vi K1y K1v K2y K2v
0 1000 0 0 0 0 0
2 980.4 18.63 0 19.6 -39.2 17.6792
4 925.25 34.0399 -37.2792 17.8628 -73.00 12.9378
6 843.3716 45.0199 -68.0798 13.8064 -95.6927 8.1536

Algoritmo con Python

Resultados
La velocidad máxima, si no hubiese límite en la altura, se encuentra en alrededor de 62.39 m/s.
Sin embargo, luego de 20 segundos se observa que la altura alcanza el valor de cero, es decir se alcanzó tierra con velocidad de  62 m/s, que son algo mas de 223 Km/h, el objeto se estrella…!

Resultados con el algoritmo:

Runge-Kutta Segunda derivada
i  [ xi,  yi,  zi ]
   [ K1y,  K1z,  K2y,  K2z ]
0 [   0. 1000.    0.]
   [0. 0. 0. 0.]
1 [  2.     980.4     18.6396]
  [  0.      19.6    -39.2     17.6792]
2 [  4.       925.257973  34.039945]
  [-37.2792    17.862827 -73.004853  12.937864]
3 [  6.       843.371672  45.019966]
  [-68.079891  13.806411 -95.692712   8.153631]
4 [  8.       743.865726  52.131168]
  [ -90.039933    9.466013 -108.971959    4.75639 ]
5 [ 10.       633.591684  56.485537]
  [-104.262336    6.011707 -116.285749    2.697031]
6 [ 12.       516.97369   59.069216]
  [-112.971073    3.646921 -120.264915    1.520438]
7 [ 14.       396.681119  60.575537]
  [-118.138432    2.154139 -122.446709    0.858504]
8 [ 16.       274.277023  61.445121]
  [-121.151075    1.253021 -123.657117    0.486147]
9 [ 18.       150.664295  61.944336]
  [-122.890243    0.722485 -124.335213    0.275943]
10 [20.       26.361127 62.230024]
   [-123.888671    0.414496 -124.717664    0.15688 ]
11 [ 22.       -98.336041  62.393224]
   [-1.244600e+02  2.371205e-01 -1.249343e+02  8.927924e-02]
12 [  24.       -223.257917   62.486357]
   [-1.247864e+02  1.354280e-01 -1.250573e+02  5.083841e-02]
13 [  26.       -348.307907   62.539475]
   [-1.249727e+02  7.727584e-02 -1.251273e+02  2.895913e-02]
14 [  28.       -473.430927   62.56976 ]
   [-1.250789e+02  4.407055e-02 -1.251671e+02  1.649935e-02]
15 [  30.       -598.595572   62.587023]
   [-1.251395e+02  2.512592e-02 -1.251898e+02  9.401535e-03]
16 [  32.       -723.783942   62.596863]
   [-1.251740e+02  1.432256e-02 -1.252027e+02  5.357469e-03]
>>> 

Instrucciones en Python

# 2Eva_IT2018_T1 Paracaidista wingsuit
import numpy as np
import matplotlib.pyplot as plt

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras,
                   vertabla=False, precision = 6):
    ''' solucion a EDO con Runge-Kutta 2do Orden Segunda derivada,
        x0,y0 son valores iniciales, h es tamano de paso,
        muestras es la cantidad de puntos a calcular.
    '''
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,3+4),dtype=float)

    # incluye el punto [x0,y0,z0]
    tabla[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    i=0
    if vertabla==True:
        print('Runge-Kutta Segunda derivada')
        print('i ','[ xi,  yi,  zi',']')
        print('   [ K1y,  K1z,  K2y,  K2z ]')
        np.set_printoptions(precision)
        print(i,tabla[i,0:3])
        print('  ',tabla[i,3:])
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        tabla[i] = [xi,yi,zi,K1y,K1z,K2y,K2z]
        if vertabla==True:
            txt = ' '
            if i>=10:
                txt='  '
            print(str(i)+'',tabla[i,0:3])
            print(txt,tabla[i,3:])
    return(tabla)


# PROGRAMA PRUEBA
# INGRESO
f = lambda t,y,v: -v # el signo, revisar diagrama cuerpo libre
g = lambda t,y,v: 9.8 - (0.225/90)*(v**2)
t0 = 0
y0 = 1000
v0 = 0
h  = 2
muestras = 15+1

# PROCEDIMIENTO
tabla = rungekutta2_fg(f,g,t0,y0,v0,h,muestras, vertabla=True)
ti = tabla[:,0]
yi = tabla[:,1]
vi = tabla[:,2]

# SALIDA
# print('tabla de resultados')
# print(tabla)

# GRAFICA
plt.subplot(211)
plt.plot(ti,vi,label='velocidad v(t)', color='green')
plt.plot(ti,vi,'o')
plt.ylabel('velocidad (m/s)')
plt.title('paracaidista Wingsuit con Runge-Kutta')
plt.legend()
plt.grid()

plt.subplot(212)
plt.plot(ti,yi,label='Altura y(t)',)
plt.plot(ti,yi,'o',)
plt.axhline(0, color='red')
plt.xlabel('tiempo (s)')
plt.ylabel('Altura (m)')
plt.legend()
plt.grid()

plt.show()

Plantear con: [ Runge-Kutta para f''(x) ] [ Runge-Kutta para f’(x) ]

..


b. Usando Runge-Kutta 2do Orden para Primera Derivada o velocidad,

El problema para un tiempo de observación t>0, se puede dividir en dos partes: velocidad y altura.

  1. Determinar velocidad: Se aplica Runge-Kutta a la expresión con primera derivada o velocidad. Use  los valores iniciales dados, descarte calcular las alturas.
  2. Determinar las altura:  Con los valores de velocidades y la altura inicial de 1 km = 1000 m puede integrar con trapecio para obtener la tabla de alturas. Se integra tramo a tramo.

Observe las unidades de medida y que la  velocidad es contraria  al eje de altura dy/dt = -v.

 

La expresión:

\frac{dv}{dt} = g - \frac{cd}{m} v^2 f(t,v) = g - \frac{cd}{m} v^2

itera = 0

K1v = h f(t,v) = 2(9.8)- \frac{0.225}{90}(0)^2) = 19.6 K2v = h f(t+h , v + K1v) = 2( 9.8 - \frac{0.225}{90}(0+19.6)^2) = 17.6792 v_1 = v_0 + \frac{K1y+K2y}{2} = 0 + \frac{19.6+17.6792}{2}= 18.6396 t_1 =t_0 + h = 0+2 = 2

itera = 1

K1v = 2(9.8 - \frac{0.225}{90} (18.6396)^2) = 17.8628 K2v = 2( 9.8 - \frac{0.225}{90} (18.6396+17.8628)^2) = 12.9379 v_1 = 18.6396 + \frac{17.8628+12.9379}{2}= 34.0399 t_1 =2+2 = 4

itera = 2

K1v = 2(9.8 - \frac{0.225}{90} (34.0399)^2) = 13.8064 K2v = 2( 9.8 - \frac{0.225}{90} (34.0399+13.8064)^2) = 8.1536 v_1 = 34.0399 + \frac{13.8064+8.1536}{2}= 45.02 t_1 = 4+2 = 6

las siguientes iteraciones se completan con el algoritmo.

Resultados

La velocidad máxima, si no hubiese límite en la altura, se encuentra en alrededor de 62.39 m/s.
Sin embargo, luego de 20 segundos se observa que la altura alcanza el valor de cero, es decir se alcanzó tierra con velocidad de  62 m/s, que son algo mas de 223 Km/h, el objeto se estrella…!

paracaidista wingsuit 02

velocidad con Runge-Kutta primera derivada
 [tiempo, velocidad, K1,K2]
[[ 0.      0.      0.      0.    ]
 [ 2.     18.6396 19.6    17.6792]
 [ 4.     34.0399 17.8628 12.9379]
 [ 6.     45.02   13.8064  8.1536]
 [ 8.     52.1312  9.466   4.7564]
 [10.     56.4855  6.0117  2.697 ]
 [12.     59.0692  3.6469  1.5204]
 [14.     60.5755  2.1541  0.8585]
 [16.     61.4451  1.253   0.4861]
 [18.     61.9443  0.7225  0.2759]
 [20.     62.23    0.4145  0.1569]
 [22.     62.3932  0.2371  0.0893]]
velocidad con RK2 y altura con trapecio
 [tiempo, velocidad, altura]
[[   0.      0.   1000.  ]
 [   2.     18.64  981.36]
 [   4.     34.04  928.68]
 [   6.     45.02  849.62]
 [   8.     52.13  752.47]
 [  10.     56.49  643.85]
 [  12.     59.07  528.3 ]
 [  14.     60.58  408.65]
 [  16.     61.45  286.63]
 [  18.     61.94  163.24]
 [  20.     62.23   39.07]
 [  22.     62.39  -85.55]]
>>> 

Los cálculos se realizaron usando las instrucciones en Python:

# 2da Evaluación I Término 2018
# Tema 1. Paracaidista wingsuit
import numpy as np

def rungekutta2(d1y,x0,y0,h,muestras):
    # Runge Kutta de 2do orden
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,2+2),dtype=float)
    
    # incluye el punto [x0,y0]
    tabla[0] = [x0,y0,0,0]
    xi = x0
    yi = y0
    for i in range(1,tamano,1):
        K1 = h * d1y(xi,yi)
        K2 = h * d1y(xi+h, yi + K1)

        yi = yi + (1/2)*(K1+K2)
        xi = xi + h
        
        tabla[i] = [xi,yi,K1,K2]
    return(tabla)

def integratrapecio_fi_tabla(xi,fi,y0):
    tamano = len(xi)
    yi = np.zeros(tamano,dtype = float)
    yi[0] = y0
    for i in range(1,tamano,1):
        h = xi[i]-xi[i-1]
        trapecio = h*(fi[i]+fi[i-1])/2
        yi[i]= yi[i-1] + trapecio
    return(yi)

# PROGRAMA -------------------------

# INGRESO
g = 9.8
cd = 0.225
m = 90
d1v = lambda t,v: g - (cd/m)*(v**2)

t0 = 0
v0 = 0
h = 2
y0 = 1000
muestras = 11

# PROCEDIMIENTO
velocidad = rungekutta2(d1v,t0,v0,h,muestras)
ti = velocidad[:,0]
vi = velocidad[:,1]

# Altura, velocidad es contraria altura,
# integrar en cada tramo por trapecios o Cuadratura de Gauss
altura = integratrapecio_fi_tabla(ti,-vi,y0)

# Tabla de resultados de tiempo, velocidad, altura
altura = np.transpose([altura])
tabla = np.concatenate((velocidad[:,0:2],altura), axis = 1)

# SALIDA
np.set_printoptions(precision=4)
print('velocidad con Runge-Kutta primera derivada')
print(' [tiempo, velocidad, K1,K2]')
print(velocidad)
np.set_printoptions(precision=2)
print('velocidad con RK2 y altura con trapecio')
print(' [tiempo, velocidad, altura]')
print(tabla)

Plantear con: [ Runge-Kutta para f''(x) ] [ Runge-Kutta para f’(x) ]

1Eva_IT2018_T2 Teorema Punto Fijo

1ra Evaluación I Término 2018-2019. 26/junio/2018. MATG1013

Tema 2. (25 puntos) Sea g:[a,b] → R una función continua tal que g(x) ∈ [a,b] para toda x ∈ [a,b] .
Suponga además que g es una función contractiva en [a,b] esto es
\forall x,y \in [a,b]: |g(x)-g(y)| \lt |x-y|

Demuestre o refute las siguientes afirmaciones:

a) g tiene al menos un punto fijo en [a,b]

b) g tiene un punto fijo único en [a,b]

Rúbrica:
Literal a. Construye la función f(x)=x-g(x)=0 , verifica el cambio de signo de f(x) en los extremos del intervalo y concluye que p =g(p) (hasta 15 puntos),
literal b. Supone dos puntos fijos, calcula | p-q |, utiliza la propiedad contractiva y concluye que se produce una contradicción (hasta 10 puntos)