2Eva_IT2008_T1_AN Resistencia de material

2da Evaluación I Término 2008-2009. 2/Septiembre/2008. Análisis Numérico

Tema 1. Mediante una investigación se ha logrado determinar que la resistencia de cierto material sometido a un esfuerzo variable en el tiempo responde a la ecuación íntegro-diferencial:

y'- \int_0^t \frac{e^u}{u} \delta u -ty =0 t \in [0,1]; y(0)=1

Determinar cuál es la resistencia en los instantes t = 0.25, 0.5, 0.75 y 1 segundos.

Utilice el método de Euler para resolver la ecuación diferencial y trapecios n=2 para resolver las integrales que se generan.

 

2Eva_IIT2007_T3_AN Circuito RL

2da Evaluación II Término 2007-2008. 12/Febrero/2008. Análisis Numérico

Tema 3. En un circuito con un voltaje E(t) y una inductancia L, la primera ley de Kirchoff da la siguiente relación:

E(t) = L \frac{\delta i}{\delta t} + Ri

Donde R es la resistencia del circuito e i es la corriente.

Con los datos de la tabla aproxime el voltaje E(t) con inductancia L=0.98 Henrios y resistencia R=0.142 Ohmios, para los valores de tiempo dados.

t 1.00 1.01 1.02 1.03 1.04
i 3.10 3.12 3.14 3.18 3.20

t = [ 1.00, 1.01, 1.02, 1.03, 1.04]
i = [ 3.10, 3.12, 3.14, 3.18, 3.20]

2Eva_IIT2007_T2_AN Lanzamiento vertical proyectil

2da Evaluación II Término 2007-2008. 12/Febrero/2008. Análisis Numérico

Tema 2. Un proyectil de masa = 0.11 Kg es lanzado verticalmente hacia arriba con una velocidad inicial V(0) = 8 m/s.

El proyectil disminuye su velocidad por efecto de la fuerza de gravedad
Fg = -mg
y por la resistencia del aire
Fr = kv|v|
donde g = 9.8 m/s2 y k = 0.002 Kg/m.

La ecuación diferencial de la velocidad está dada por:

m \frac{\delta v}{\delta t} = -mg - kv|v|

a. Calcule la velocidad con el método de Runge-Kutta de cuarto orden para

t = 0.2, 0.4, … , 1.0 segundos.

b. Calcule en que tiempo el proyectil alcanzará la altura máxima.


Referencias:

2Eva_IIT2007_T1 Integral regla Simpson

2da Evaluación II Término 2007-2008. 12/Febrero/2008. ICM00158

Tema 1. Use la regla de Simpson para calcular en forma aproximada

A = \int_0^1 y(x)dx

Use los puntos de y(x) que se obtienen resolviendo la ecuación diferencial

y'' - y' - y - x + 1 = 0

y(0) = 1, y(1) = 2

con el método de diferencias finitas, h = 0.25