3Eva_IIT2014_T3 Advección-difusión

3ra Evaluación II Término 2014-2015. 10/Marzo/2015. ICM00158

Tema 3. La ecuación de advección-difusión se utiliza para calcular la distribución de la concentración que hay en el lado largo de un reactor químico rectangular,

\frac{\partial c}{\partial t} = D \frac{\partial^2c}{\partial x^2} - U\frac{\partial c}{\partial x} - kc

Donde:
c=concentración (mh/m3),
t= tiempo (min),
D=coeficiente de difusión (m2/min),
x= distancia a lo largo del eje longitudinal del tanque (m),

donde x=0 en la entrada del tanque,
U =velocidad en la dirección de x (m/min) y
k = tasa de reacción (1/min) con la que el producto químico se convierte en otro.

Desarrolle un esquema explícito para resolver esta ecuación en forma numérica. Pruébela para k=0.15, D=100 y U=1, para un tanque con una longitud de 10 m. Use Δx=1 m, y un Δt=0.005.

Suponga la concentración del flujo de entrada es de 100 y la concentración inicial en el tanque es de cero.

Realice la simulación de t=0 a 100 y grafique las concentraciones en cada tiempo versus x. (Solo dos iteraciones)

2Eva_IIT2014_T3 EDP Hiperbólica, Presión en tubo musical

2da Evaluación II Término 2014-2015. 23/Febrero/2015. ICM00158

Tema 3. En un tubo de órgano musical, la presión del aire p(x,t) se rige por la ecuación de onda

\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} 0 \lt x \lt L, 0\lt t

Donde L es la longitud del tubo y c es una constante física.

Si el tubo se encuentra abierto, las condiciones de frontera estarán dadas por:

p(0,t) = p0
p(L,t) = p0

Si el tubo está cerrado en el extremo donde x=L, las condiciones de frontera serán:

p(0,t) = p0

\frac{\partial p(l,t)}{\partial x} = 0

Suponga que c=1, L=1 y que las condiciones iniciales son

p(x,0) = p0 cos(2πx)

\frac{\partial p(x,0)}{\partial t} = 0

0 \leq x \leq L

a. Aproxime la presión de un tubo abierto usando las diferencias finitas con p0 = 0.9 en x = 1/2 para t = 0.5 y t = 1,

b. Modifique el procedimiento del literal a para el problema del tubo de órgano cerrado con p0 = 0.9 y luego aproxime p(0.5 , 0.5) y p(0.5 , 1) usando h = 0.1 y k = 0.1


 

 

2Eva_IT2012_T3 EDP elíptica, placa rectangular

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM00158

Tema 3. (20 puntos) Aproxime la solución de la ecuación diferencial parcial:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = (x^2 + y^2) e^{xy} 0\lt x \lt 1, 0\lt y \lt 0.5

Con las condiciones de frontera:

u(0,y) = 1, u(1,y) = e^y , 0 \leq y \leq 0.5 u(x,0) = 1, u(x,0.5) = \sqrt{e^x} , 0 \leq x \leq 1

Usando un tamaño de paso hx = hy = 0.25

3Eva_IT2011_T4 EDP Elíptica, valor de frontera

3ra Evaluación I Término 2011-2012. 13/Septiembre/2011. ICM00158

Tema 4. Resolver el siguiente problema de valor en la frontera:

\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2 0\lt x \lt 1 0\lt y \lt 1 \begin {cases} u(0,y)=0\\ u(1,y)=\sinh (\pi) \sin (\pi y), & 0\leq y \leq 1\\ u(x,0) = u(x,1) = x(1-x), & 0\leq x \leq 1 \end{cases}

con h = k = 1/3

 

2Eva_IIT2011_T3 EDP Parabólica, explícito

2da Evaluación II Término 2011-2011. 31/Enero/2012. ICM00158

Tema 3. Aproxime la solución de la ecuación diferencial parcial:

\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} =2

t> 0 , 0≤ x ≤ 1

\begin{cases} u(0,t) = u(1,t) = 0, & t\gt0 \\u(x,0) = \sin (\pi x) + x(1-x) \end{cases}

Con h= 0.25 y k=0.04, realizar solo dos iteraciones en el tiempo (j=1,2) .

Indicación: Para establecer el algoritmo, utilice la fórmula progresiva para la primera derivada.

3Eva_IT2010_T4 EDP hiperbólica

3ra Evaluación I Término 2010-2011. 14/Septiembre/2010. ICM00158

Tema 4. Deducir el algoritmo de diferencia finita que aproxima la solución de la ecuación de onda dada:

\frac{\partial^2 u(x,t)}{\partial t^2} = \frac{\partial^2 u(x,t)}{\partial x^2} 0\lt x \lt l, t \gt 0 \begin{cases}u(0,t) = u(l,t) , & t\ge 0 \\u(x,0) = f(x) , & 0\leq x \leq l\\ \frac{\delta u (x,0)}{\delta t} = g(x) , & 0\leq x \leq l\end{cases}

Donde las funciones f y g son del espacio C [0,l], el mismo intervalo para las x.

2Eva_IT2009_T2_AN EDP hiperbólica

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 2. (20 puntos) Dada la ecuación hiperbólica

\frac{\partial ^2 u}{\partial t^2} - \frac{\partial ^2 u}{\partial x^2} = 0 0 \lt x \lt 1, t\gt 0 \begin{cases} u(0,t) = u(1,t) = 0 , & t\gt 0 \\ u(x,0) = \sin (2\pi x), & 0 \leq x \leq 1 \\ \frac{\delta u}{\delta t} (x,0) = 2 \pi \sin (2\pi x) , & 0 \leq x \leq 1\end{cases}

Aproximar u(x,t) para t=0.8, con h=k=0.2

Rúbrica: Establecer el método de diferencia centrada y condiciones de frontera (5 puntos), determinar ωi1 (5 puntos), aproximación de u(x,t) en t=0.8 (10 puntos)

2Eva_IT2008_T3_AN EDP elíptica

2da Evaluación I Término 2008-2009. 2/Septiembre/2008. Análisis Numérico

Tema 3. Resolver la siguiente ecuación diferencial

\frac{\partial ^2 u}{\partial x^2}+\frac{\partial ^2 u}{\partial y^2}=0 1\lt x \lt 2, 0 \lt y \lt 1 u(x,0) = 2 \ln(x) u(x,1)= \ln(x^2 + 1) 1\leq x \leq 2 u(1,y) = \ln(y^2 +1) u(2,y)= \ln(y^2 + 4) 0\leq y \leq 1

3Eva_IIT2007_T1 EDP Eliptica, problema de frontera

3ra Evaluación II Término 2007-2008. 26/Febrero/2008. ICM00158

Tema 1. Resolver el problema de frontera

\frac{\partial^2u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} = 4 0\lt x\lt 1, 0 \lt y \lt 2 u(x,0) = x^2 , u(x,2) = (x-1)^2 0\leq x \leq 1 u(0,y) = y^2 , u(l,y) = (y-1)^2 0\leq y \leq 2

con h = 1/3 y k =2/3

2Eva_IT2010_T3 EDP elíptica, Placa no rectangular

2da Evaluación I Término 2010-2011. 31/Agosto/2010. ICM00158

Tema 3. La placa plana mostrada en la figura está construida con cierto metal, y se ha determinado que la temperatura en los bordes de la placa es la que se indica en la figura.

Ademas de tiene que el término no homogéneo asociado a la ecuación elíptica respectiva es f(x,y)=20

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = f

El problema consiste en determinar la temperatura en los puntos del interior de la placa en la malla que se muestra en la figura.

a. Determinar el algoritmo en diferencias finitas que resuelve el problema

b. Plantear el sistema de ecuaciones lineas que resuelve el problema

c. Utilice el método de Gauss para resolver el sistema de ecuaciones generado