2Eva_2023PAOII_T3 EDP desarrolle expresión

2ra Evaluación 2023-2024 PAO II. 30/Enero/2024

Tema 3 (30 puntos) Para la siguiente Ecuación Diferencial Parcial con b = 2, resuelva usando las condiciones mostradas

\frac{\partial ^2 u}{\partial x^2} + b\frac{\partial u}{\partial x} = \frac{\partial u}{\partial dt}
0 < x < 1

0 < t < 0.5

Condiciones de frontera:
u(0,t)=0, u(1,t)= 1, 0≤t≤0.5
Condiciones iniciales:
u(x,0)=0, 0≤x≤1

Utilice diferencias finitas centradas y hacia adelante para las variables independientes x,t

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j

b. Realice la gráfica de malla,

c. Desarrolle y obtenga el modelo discreto para u(xi,tj)

d. Realice al menos tres iteraciones en el eje tiempo.

e. Estime el error de u(xi,tj) y adjunte los archivos del algoritmo y resultados.

f. Con el algoritmo, estime la solución para b = 0 y b=-4. Realice las observaciones de resultados para cada caso.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (5), desarrollo de iteraciones (10), literal e (10 puntos), literal f (5 puntos extra)

Referencia: EDP Parabólicas. Chapra & Canale. 5ta Ed. Ejercicio 30.15. P.904

2Eva_2023PAOI_T3 EDP elíptica, placa rectangular con frontera variable

2da Evaluación 2023-2024 PAO I. 29/Agosto/2023

Tema 3 (35 puntos) Aproxime la solución de la Ecuación Diferencial Parcial

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = \Big( x^2 + y^2 \Big) e^{xy} 0 \lt x \lt 1 0 \lt y \lt 0.5

Con las condiciones de frontera:

u(0,y)=1, u(1,y)= y, 0≤y≤0.5
u(x,0)=1, u(x,0.5)=x/2, 0≤x≤1

Aproxime la solución con tamaños de paso Δx = 0.25, Δy = 0.25
Utilice diferencias finitas centradas para las variables independientes x,y

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j

b. Realice la gráfica de malla,

c. desarrolle y obtenga el modelo discreto para u(xi,tj)

d. Realice al menos tres iteraciones en el eje tiempo.

e. Estime el error de u(xi,tj) y adjunte los archivos del algoritmo y resultados.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (10), construcción del sistema lineal (15), resolución del sistema (5 puntos).

Referencia: 2Eva_IT2012_T3 EDP elíptica, placa rectangular

2Eva_2022PAOII_T3 EDP Parabólica con coseno 3/4π

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 3. (35 puntos) Aproxime la solución a la siguiente ecuación diferencial parcial parabólica

\frac{\partial^2 u}{\partial x^2} = b \frac{\partial u}{\partial t}

2Eva2022PAOII_T3 EDP ParabolicaCon las siguientes condiciones de frontera:
u(0,t)=1
u(1,t)=0

Y las condiciones iniciales
u(x,0) = \cos \Big( \frac{3π}{2}x\Big)

Utilice diferencias finitas centradas para x, para t hacia adelante.

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j
b. Realice la gráfica de malla,
c. desarrolle y obtenga el modelo discreto para u(xi,tj)

Suponga que b = 2, Aproxime la solución con Δx = 0.2, Δt = Δx/100.

d. Realice al menos tres iteraciones en el eje tiempo.
e. Estime el error de u(xi,tj), y presente observaciones sobre la convergencia del método.

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (5 puntos), literal d (15 puntos), literal e (5 puntos).

Referencia: Chapra & R. Canale (2010). Métodos Numéricos para Ingenieros. Ejercicio 30.15 p904,
Solving the heat equation | DE3. 3Blue1Brown 16 Junio 2019.

 

2Eva_2022PAOI_T3 EDP parabólica barra enfriada en centro

2da Evaluación 2022-2023 PAO I. 30/Agosto/2022

Tema 3. (40 puntos) Use el método de diferencias progresivas para aproximar la solución de la siguiente ecuación diferencial parcial parabólica:

\frac{\partial U}{\partial t} - \frac{1}{9} \frac{\partial ^2 U}{\partial x^2} = 0 0 \leq x \leq 2, t>0

Con las condiciones iniciales de borde e iniciales:

U(0,t) = U(2,t) = 0, t>0 U(x,0) = \cos \Big( \frac{\pi}{2}(x-3)\Big) , 0 \leq x \leq 2

Aplique un método numérico para encontrar los valores de U(x,t) usando Δx = 1/3, Δt = 0.02 y muestre:

a. La grafica de malla
b. Ecuaciones de diferencias divididas  a usar
c. Encuentre las ecuaciones considerando las condiciones dadas en el problema.
d. Determine el valor de λ, agrupando las constantes durante el desarrollo, revise la convergencia del método.
e. Resuelva para tres pasos
f. Estime el error (solo plantear)
g. Usando el algoritmo, aproxime la solución para t=0.02 y t=0.1

Rúbrica: literal a (3 puntos), literal b (2 puntos), literal c (5 puntos), literal d (5 puntos), aplicación de condiciones iniciales (5 puntos), literal e (10 puntos), literal f (5 puntos). literal g, usando algoritmo (5 puntos)

Referencia: 2Eva_IT2017_T3 EDP parabólica http://blog.espol.edu.ec/analisisnumerico/2eva_it2017_t3-edp-parabolica/


2Eva_2021PAOII_T3 EDP – Línea de transmisión sin pérdidas

2da Evaluación 2021-2022 PAO II. 25/Enero/2022

Tema 3. (40 puntos) En una línea de transmisión eléctrica de longitud 200 m en forma de cable coaxial, que conduce una corriente alterna de alta frecuencia, para el ejercicio se considera la línea “sin pérdida” o sin resistencia equivalente.


El voltaje V en el cable se describe por medio de:

\frac{\partial ^2 V}{\partial x^2} =LC \frac{\partial ^2 V}{\partial t^2}
0 < x < 200
t>0

Donde:
L = 0.1 Faradios/m, es la inductancia por longitud unitaria y
C = 0.3 Henrios/m es la capacitancia por longitud unitaria

Suponga que el voltaje y la corriente también satisfacen:

V(0,t) = V(200,t) = 0
V(x,0) = 110 \sin \frac{\pi x}{200}
\frac{\partial V}{\partial t}(x,0) = 0

Aplique un método numérico para encontrar voltaje o corriente usando Δx = 10, Δt = 0.1 y muestre:

a. la grafica de malla
b. ecuaciones de diferencias divididas a usar
c. encuentre las ecuaciones considerando las condiciones dadas en el problema.
d. determine el valor de λ, agrupando las constantes durante el desarrollo, revise la convergencia del método.
e. Resuelva para tres pasos
f. Estime el error (solo plantear)
g. Aproxime la solución para t=0.2 y t=0.5

Rúbrica: literal a (3 puntos), literal b (2 puntos), literal c (5 puntos), literal d (5 puntos), aplicación de condiciones iniciales (5 puntos), literal e (10 puntos), literal f (5 puntos). literal g, usando algoritmo (5 puntos)

Referencia: Burden 9Ed Ejercicios 12.3.8 p745

2Eva_2021PAOI_T3 EDP Elíptica con valores en la frontera f(x) g(y)

2da Evaluación 2021-2022 PAO I. 31/Agosto/2021

Tema 3 (40 puntos) Considere la siguiente ecuación diferencial parcial con valores en la frontera (PVF):

\frac{\partial ^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} = 0 0 \lt x \lt \frac{1}{2}, 0 \lt y\lt \frac{1}{2} u(x,0)=0, 0 \leq x \leq \frac{1}{2} u(0,y)=0 , 0\leq y \leq \frac{1}{2} u\Big(x,\frac{1}{2} \Big) = 200 x , 0 \leq x \leq \frac{1}{2} u\Big(\frac{1}{2} ,y \Big) = 200 y , 0 \leq y \leq \frac{1}{2}

Use el método de diferencias finitas para aproximar la solución del PVF anterior tomando como tamaño de paso

h=k=\frac{1}{6}

Recuerde: presentar la malla, etiquetando cada eje con valores referenciales de los puntos seleccionados, presentar el planteamiento completo del ejercicio, usar expresiones completas en el desarrollo de cada uno de los pasos.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (10), construcción del sistema lineal (20), resolución del sistema (5 puntos).

3Eva_2020PAOII_T3 Deflexiones de una placa

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 3. (40 puntos) Una placa cuadrada, apoyada simplemente en sus extremos está sujeta a un carga por unidad de área q.


La deflexión en la dimensión z de determina resolviendo la EDP elíptica siguiente:

\frac{\partial^4 z}{\partial x^4} + 2\frac{\partial^4 z}{\partial x^2 \partial y^2} +\frac{\partial^4 z}{\partial y^4} =\frac{q}{D}

sujeta a condiciones de frontera en los extremos, donde la deflexión y la pendiente normal a la frontera son cero.

D = \frac{E \Delta x^3}{12(1-\sigma ^2)}

El parámetro D es la rigidez de flexión, donde E=módulo de elasticidad, Δz=espesor de la placa, σ=razón de Poisson.

Para simplificar, se define la variable u como sigue:


u = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}

Permitiendo volver a expresar la ecuación primera como:

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{q}{D}

Con lo que el problema se reduce a resolver de manera sucesiva las dos ecuaciones de Poisson.


Primero la ecuación respecto a u sujeta a la condición de frontera u = 0 en los extremos, después los resultados se emplean junto con la ecuación respecto a z sujeta a la condición de que z = 0 en los extremos.
Considere una placa de 2 metros de longitud en sus extremos, q= 33.6 k N/m2, σ =0.3, Δz = 0.01 m, E = 2×1011 Pa.

a) Plantee y desarrolle el ejercicio en papel para u(x,y) para al menos 3 puntos en la malla.
Utilice Δx = Δy = 0.5 para las iteraciones.

b) Desarrolle un algoritmo para determinar las deflexiones de una placa cuadrada sujeta a una carga constante por unidad de área resolviendo de manera sucesiva las dos ecuaciones.

Rúbrica: gráfica de malla (5 puntos), desarrollo de expresiones, agrupar constantes, y simplificación (10 puntos), iteraciones para 3 puntos (10 puntos), Revisión de errores (5 puntos). literal b (10 puntos)

Referencia: Deflexiones de una placa. Chapra 32.2 p938, pdf962

3Eva_2020PAOI_T3 EDP Parabólica

3ra Evaluación 2020-2021 PAO I. 22/Septiembre/2020

Tema 3. (35 puntos) Desarrolle con el método implícito para aproximar la solución de la EDP Parabólica

\frac{\partial u}{\partial t} - c^2 \frac{\partial ^2 u}{\partial x^2} = g(x)
u(x,0) = f(x) u(0,t) = 0 u(1,t) = 0
f(x) = \begin{cases} 5x , & 0 \le x \le 0.5 \\ 5(1-x) , & 0.5 \lt x \le 1\end{cases} g(x) = 2 , 0 \le x \le 1

Considere para h=0.25, k=0.05, c=1

a. Grafique la malla
b. Escriba las ecuaciones para las derivadas
c. Plantee las ecuaciones
d. Resuelva para tres pasos
e. Estime el error (solo plantear)

Rúbrica: literal a (5 puntos), literal b (5puntos), literal c (10 puntos), literal d (10 puntos), literal e (5 puntos)

2Eva_IIT2019_T3 EDP elíptica, placa en (1,1)

2da Evaluación II Término 2019-2020. 28/Enero/2020. MATG1013

Tema 3. (30 Puntos) Para la ecuación diferencial parcial elíptica mostrada:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = \frac{x}{y} + \frac{y}{x}

1 <  x < 2
1 <  y < 2

Y con las siguientes condicines de frontera:

u(x,1)= x \ln (x), u(x,2) = x \ln (4x^{2}),1 \lt x \lt 2 u(1,y)= y \ln(y), u(2,y) = 2y \ln (2y), 1 \lt y \lt 2

Considere los valores hx=hy=0.25

Realice la aproximación numérica para la solución.

Para resolver el sistema de ecuaciones utilice el método de Gauss-Seidel para dos iteraciones.

Rúbrica: Plantear la malla (5 puntos), calcular los bordes (3 puntos), plantear las segundas derivadas (7 puntos), plantear las ecuaciones  (10 puntos), aproximar la solución  (5 puntos)

3Eva_IT2019_T3 Difusión en sólidos

3ra Evaluación I Término 2019-2020. 10/Septiembre/2019. MATG1013

Tema 3. (30 Puntos).  En el año 1855, los experimentos de Adolf Fick tratan sobre la medición de concentraciones y sus flujos, también ahora aplicados a la difusión en sólidos que en ese tiempo no se consideraba posible.

La gráfica muestra los cambios en el tiempo de concentración Φ de un gas en un sólido (estado no-estacionario) para un sólido semi infinito (eje y).

La segunda ley de Fick predice la forma en que la difusión causa que la concentración cambie con el tiempo. Se trata de una ecuación diferencial parcial que en una dimensión se escribe:

\frac{\partial \phi}{\partial t} = D\frac{\partial ^2 \phi}{\partial x^2}
Φ(0, t) = 5
Φ(L, t) = 0
Φ(x,0) = 0
D = 0.16
L =0.1

a. Plantee las ecuaciones, la malla, desarrolle y obtenga el modelo Φ(xi,tj)

b. Aproxime la solución con Δx = 0.02, Δt = Δx/100. Realice al menos tres iteraciones en el eje tiempo.

c. Estime el error de Φ(xi,tj)

Rúbrica: Construir la malla (5 puntos), plantear la ecuación en el nodo i,j (5 puntos), modelo de ecuación (5 puntos), literal b (10 puntos), literal c (5 puntos).

Referencia: https://es.wikipedia.org/wiki/Leyes_de_Fick;
Difusión 2ª Ley de Fick|7/22|UPV (2011) https://www.youtube.com/watch?v=HHBvZDNvTic