1Eva_IIT2017_T4 Teoría

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 4. (25 puntos) Complete:

a) En el teorema de iteración de punto fijo para sistemas de ecuaciones lineales se tiene que:
Para todo X(0)Rn, la sucesión \big( x^{(k)} \big)_{k=0}^{\infty} definida por: ______
converge a la solución de: _____
si y solo si: _____

b) Si f ∈ C2[a, b] y sea p ∈ [a, b] tal que f(p) = 0, f'(p) ≠ 0 entonces el método de Newton converge a p y tiene convergencia cuadrática.
Demuestre la proposición anterior.

c) En el teorema de punto fijo para ecuaciones de una variable se tiene:
Si g ∈ C[a, b] tal que g(x) ∈ [a, b] para todo x en [a, b].
Además supongamos que existe g’en (a,b) y una constante positiva 0<k<1 tales que: ____
Entonces, ___

Rúbrica: En el literal a), por cada espacio llenado hasta 3%, en el literal b), 8% por demostrar que g'(p)=0 y 2% por demostrar que En+1 = g»(p)/2 En, en el literal c) hasta 3% por cada espacio llenado

1Eva_IIT2017_T3 Circuito eléctrico

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 3. (25 puntos) El sistema de ecuaciones que sigue se generó por medio de aplicar la ley de malla de corriente al circuito de la figura.

\begin{cases} 55 I_1 - 25 I_4 = -200 \\ -37 I_3 - 4 I_4 = -250 \\ -25 I_1 - 4 I_3 + 29 I_4 = 100 \\ I_2 = -10 \end{cases}

a) Use el método de eliminación de Gauss para resolver el sistema

b) Use el método de Jacobi y determine el número de iteraciones para ε=0.01

c) Si el coeficiente 55 se cambia a 54.9, encuentre el error relativo de la aproximación en el literal a.

Rúbrica: Aplicación del método de eliminación de Gauss hasta 10%, Uso del método de Jacobi hasta 5% y determinación del número de iteraciones hasta 5%, Calculo del residuo y cota del error relativo hasta 5%.


A = [[ 55.0, 0,  0, -25],
     [  0  , 0,-37,  -4],
     [-25  , 0, -4,  29],
     [  0  ,  1, 0,   0]]

B = [-200,-250,100,-10]

1Eva_IIT2017_T2 Ecuaciones no lineales

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 2. (25 puntos) Determine una raiz de las ecuaciones no lineales simultaneas siguientes:

y = – x2 + x + 0.75
y + 5xy = x2

a) Bosqueje una gráfica y seleccione X(0)

b) Use el método de Newton en dos variables y realice tres iteraciones.

Rúbrica: Bosquejar la gráfica hasta 5%, Plantear el método hasta 5%, Calcular el Jacobiano hasta 5% Hacer tres iteraciones, estimando el error hasta 10%.

1Eva_IIT2017_T1 Aproximar a polinomio usando puntos

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 1. (25 puntos) Se sabe que f ∈ C3[a, b] y tiene la siguiente tabla:

 x  f(x)
 0  1
 0.2  1.6
 0.4  2.0

a) Encuentre el polinomio de Taylor de grado 2 alrededor de X0 = 0.2 para aproximar a f(x)

b) Aproxime \int_{0}^{0.4}f(x)dx por medio de \int_{0}^{0.4}P_{2}(x)dx
Estime el error suponiendo que f'''(\epsilon ) =1

Rúbrica: Plantear el polinomio hasta 5%, hallar las derivadas hasta 10%, hallar la integral hasta 5% hallar el error hasta 5%.

1Eva_IT2017_T4 Componentes eléctricos

1ra Evaluación I Término 2017-2018. 26/junio/2017. MATG1013

Tema 4. (25puntos)

https://es.dreamstime.com/tablero-electr%C3%B3nico-de-la-tv-image120402048
Tablero electrónico de la TV. Sistema, tarjeta

Un supervisor revisa la producción de tres tipos de componentes eléctricos.

Para ellos se requieren tres clases de materiales como se indica en la tabla adjunta:

Material 1 Material 2 Material 3
Componente 1 5 9 3
Componente 2 7 7 16
Componente 3 9 3 4

a) Si cada semana se dispone de un total de 945 gramos de material 1, 987 gramos de material 2 y 1049 gramos de material 3, ¿Cuántos componentes a lo sumo pueden producirse por semana? (Solo plantear)

b) Si se resuelve con el método de eliminación de Gauss, ¿Cuántas multiplicaciones/divisiones como máximo se realizan?

c) Si se resuelve con el método de Jacobi, encuentre la norma infinita de T y comente sobre la convergencia.

d) Resuelva utilizando el método de Gauss-Seidel, realice tres iteraciones y estime el error de la tercera iteración.

Rúbrica: Planteo hasta 5 puntos, Número de multiplicaciones hasta 5 puntos, ‖T‖ hasta 10 (con filas ordenadas), Iteraciones con Gauss Seidel con la estimación del error hasta 5 puntos.

1Eva_IT2017_T3 Sistema no lineal

1ra Evaluación I Término 2017-2018. 26/junio/2017. MATG1013

Tema 3. (25 puntos) 3. El sistema no lineal

-x(x + 1) + 2y = 18
x – 1 + (y – 6)2 = 25

tiene dos soluciones.

a) Aproxime gráficamente las soluciones

b) Utilice el método de Newton Raphson en una variable para aproximar una solución, (realice tres iteraciones).

c) Utilice el método de Newton Raphson en dos variables para aproximar una solución, (realice tres iteraciones) y estime el error de la segunda iteración.

Rúbrica: Soluciones gráficas hasta 5 puntos, Método de Newton hasta 10 puntos, Método que involucra al jacobiano hasta 10 puntos.

1Eva_IT2017_T2 Tanque esférico-volumen

1ra Evaluación I Término 2017-2018. 26/junio/2017. MATG1013

Tema 2 (25 puntos). El volumen V del líquido contenido en un tanque esférico de radio r está relacionado con la profundidad h del líquido por la ecuación

http://www.que.es/ultimas-noticias/economia/fotos/tanque-almacenamiento-combustible-planta-schafik-f243687.html

V = \frac{\pi h^{2} (3r-h)}{3}

Es posible desarrollar las siguientes dos fórmulas para él método de punto fijo:

h = \sqrt{\frac{h^{3}+(3V/\pi)}{3r}} h = \sqrt[3]{3(rh^{2}-V/\pi)}


Si r=1 m y V=0.75 m3, determine si las dos alternativas son estables (convergen), realice las iteraciones para aproximar h con un error menor o igual 0.01 m.

Rúbrica: Cálculo de las derivadas (10 puntos), determinación de la estabilidad (5 puntos), iteraciones con el error (10 puntos).

Referencia: Ejercicio 5.17. p143 Steven C. Chapra. Numerical Methods 7th Edition.

s1Eva_IT2017_T2 Tanque esférico-volumen

Ejercicio: 1Eva_IT2017_T2 Tanque esférico-volumen

a. Planteamiento del problema

V = \frac{\pi h^{2} (3r-h)}{3}

Si r=1 m y V=0.75 m3,

0.75 = \frac{\pi h^{2} (3(1)-h)}{3} 0.75 -\frac{\pi h^{2} (3(1)-h)}{3} = 0 f(h) = 0.75 -\frac{\pi h^{2} (3-h)}{3} = 0.75 -\frac{\pi}{3}(h^{2} (3)-h^{2}h) = 0.75 -\frac{\pi}{3}(3 h^{2} - h^{3}) f(h) = 0.75 -\pi h^{2} + \frac{\pi}{3}h^{3}

b. Intervalo de búsqueda de raíz

El tanque vacio tiene h=0 y completamente lleno h= 2r = 2(1) = 2, por lo que el intevalo tiene como extremos:

[0,2]

Verificando que exista cambio de signo en la función:

f(0) = 0.75 -\pi (0)^{2} + \frac{\pi}{3}(0)^{3} = 0.75 f(2) = 0.75 -\pi (2)^{2} + \frac{\pi}{3}(2)^{3}= -3.4387

y verificando al usar la gráfica dentro del intervalo:

Tolerancia

Se indica en el enunciado como 0.01 que es la medición mínima a observar con un flexómetro.

tolera = 0.01


c. Método de Newton-Raphson
d. Método de Punto Fijo


c. Método de Newton-Raphson

El método de Newton-Raphson requiere la derivada de la función:

x_{i+1} = x_i -\frac{f(x_i)}{f'(x_i)} f(h) = 0.75 -\pi h^{2} + \frac{\pi}{3}h^{3} f'(h) = -2\pi h + \pi h^{2}

Tomando como punto inicial de búsqueda el extremo izquierdo del intervalo, genera una división para cero. Por lo que se mueve un poco a la derecha, algo más cercano a la raiz, viendo la gráfica por ejemplo 0.1

x0 = 0.1

iteración 1

i =0

f(0.1) = 0.75 -\pi (0.1)^{2} + \frac{\pi}{3}(0.1)^{3} =0.7196 f'(0.1) = -2\pi (0.1) + \pi (0.1)^{2} = -0.5969 x_{1} = x_0 -\frac{0.7496 }{-0.0625} = 1.3056 tramo = |x_{1}-x_{0}| = |0.1-1.3056 | = 1.2056

iteración 2

i =1

f(1.3056) = 0.75 -\pi (1.3056)^{2} + \frac{\pi}{3}(1.3056)^{3} = -2.2746 f'(1.3056) = -2\pi (1.3056) + \pi (1.3056)^{2} =-2.8481 x_{1} = x_0 -\frac{-2.2746}{-2.8481} = 0.5069 tramo = |x_{2}-x_{1}|=|0.5069-1.3056|=0.7987

iteración 3

i =2

f(0.5069) = 0.75 -\pi (0.5069)^{2} + \frac{\pi}{3}(0.5069)^{3} = 0.0789 f'(0.5069) = -2\pi (0.5069) + \pi (0.5069)^{2} =-2.3780 x_{1} = x_0 -\frac{0.0789}{-2.3780} = 0.5401 tramo = |x_{3}-x_{2}| =|0.5401 - 0.5069| = 0.0332

Observe que el tramo disminuye en cada iteración , por lo que el método converge, si se siguen haciendo las operaciones se tiene que:

 [ xi, xnuevo, tramo]
[[1.00000000e-01 1.30560920e+00 1.20560920e+00]
 [1.30560920e+00 5.06991599e-01 7.98617601e-01]
 [5.06991599e-01 5.40192334e-01 3.32007350e-02]
 [5.40192334e-01 5.39518667e-01 6.73667593e-04]]
raiz 0.5395186666699257

Instrucciones en Python

para Método de Newton-Raphson

# 1Eva_IT2017_T2 Tanque esférico-volumen
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
fx = lambda h: 0.75 - np.pi*(h**2)+(np.pi/3)*h**3
dfx = lambda h: -2*np.pi*h+np.pi*(h**2)

# Parámetros de método
a = 0
b = 2
tolera = 0.01
x0 = 0.1
iteramax = 100

# parametros de gráfica
La = a
Lb = b
muestras = 21

# PROCEDIMIENTO
# Newton-Raphson
tabla = []
tramo = abs(2*tolera)
xi = x0
while (tramo>=tolera):
    xnuevo = xi - fx(xi)/dfx(xi)
    tramo = abs(xnuevo-xi)
    tabla.append([xi,xnuevo,tramo])
    xi = xnuevo
tabla = np.array(tabla)

# calcula para grafica
hi = np.linspace(La,Lb,muestras)
fi = fx(hi)
gi = dfx(hi)

# SALIDA
print(' [ xi, xnuevo, tramo]')
print(tabla)
print('raiz', xnuevo)
plt.plot(hi,fi)
plt.plot(xi,fx(xi),'ro')
plt.axhline(0, color='green')
plt.xlabel('h')
plt.ylabel('V')
plt.title('Método Newton-Raphson')
plt.show()

Planteo con Punto Fijo


d. Método de Punto Fijo

Del planteamiento del problema en el literal a, se tiene que:

0.75 = \frac{\pi h^{2} (3(1)-h)}{3}

de donde se despeja una h:

\frac{3(0.75)}{\pi (3(1)-h) } = h^{2} h = \sqrt{\frac{3*0.75}{\pi (3-h) }} h = \sqrt{\frac{2.25}{\pi (3-h) }}

con lo que se obtienen las expresiones a usar en el método

identidad = h g(h) = \sqrt{\frac{2.25}{\pi (3-h) }}

El punto inicial de búsqueda debe encontrarse en el intervalo, se toma el mismo valor que x0 en el método de Newton-Raphson

x0 = 0.10

Iteracion 1

x_0= 0.10 g(0.10) = \sqrt{\frac{2.25}{\pi (3-(0.10) }}= 0.4969 tramo= |0.4969-0.10| = 0.3869

Iteracion 2

x_1= 0.4969 g(0.4969) = \sqrt{\frac{2.25}{\pi (3-(0.4969 ) }}= 0.5349 tramo= |0.5349- 0.4969| = 0.038

Iteracion 3

x_2 =0.5349 g(0.5349) = \sqrt{\frac{2.25}{\pi (3-(0.5349) }}= 0.5390 tramo= |0.5390 - 0.5349| = 0.0041

con lo que se cumple el criterio de tolerancia, y se obtiene la raiz de:

raiz = 0.5390

Tabla de resultados, donde se observa que el tramo o error en cada iteración disminuye, por lo que el método converge.

 [i,xi,xi+1,tramo]
[[1.         0.1        0.4969553  0.3969553 ]
 [2.         0.4969553  0.5349116  0.03795631]
 [3.         0.5349116  0.53901404 0.00410243]]
raiz 0.5390140355891347
>>> 

Instrucciones en Python

para Método de Punto-Fijo, recordamos que el método puede diverger, por lo que se añade el parámetro iteramax

# 1Eva_IT2017_T2 Tanque esférico-volumen
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
fx = lambda h: h
gx = lambda h: np.sqrt(2.25/(np.pi*(3-h)))

a = 0.1
b = 2
tolera = 0.01
iteramax = 100

La = a
Lb = b
muestras = 21

# PROCEDIMIENTO
# Punto Fijo
tabla = []
i = 1 # iteración
b = gx(a)
tramo = abs(b-a)
while not(tramo<=tolera or i>=iteramax):
    tabla.append([i,a,b,tramo])
    a = b
    b = gx(a)
    tramo = abs(b-a)
    i = i+1
tabla.append([i,a,b,tramo])
respuesta = b

# Validar respuesta
if (i>=iteramax):
    respuesta = np.nan
tabla = np.array(tabla)

# calcula para grafica
hi = np.linspace(La,Lb,muestras)
fi = fx(hi)
gi = gx(hi)

# SALIDA
print(' [i, xi, xi+1, tramo]')
print(tabla)
print('raiz', respuesta)
plt.plot(hi,fi, label = 'identidad', color='green')
plt.plot(hi,gi, label = 'g(h)', color = 'orange')
plt.plot(b,gx(b),'ro')
plt.axhline(0, color='green')
plt.xlabel('h')
plt.ylabel('V')
plt.title('Método Punto Fijo')
plt.legend()
plt.axhline(0, color='green')
plt.show()

Otra forma de probar la convergencia es que |g'(x)|<1 que se observa en la una gráfica adicional, lo que limita aún más el intervalo de búsqueda.

Desarrollo en la siguiente clase.


1Eva_IT2017_T1 Caida de paracaidista

1ra Evaluación I Término 2017-2018. 26/junio/2017. MATG1013

Tema 1. (25 puntos) https://www.dreamstime.com/stock-photo-skydiving-formation-group-people-image62015024La velocidad de caída de un paracaidista puede calcularse con la ecuación

v(t) = \frac{gm}{c} \big( 1- e^{-(c/m)t} \big)

donde g = 9.8, m = 50±2 c = 12.5±1.5

a) Construya un polinomio con los puntos t = 0, 3, 5.

b) Evalúe el polinomio para t = 4 y estime el error de truncamiento y el error propagado.

Rúbrica: Construcción del polinomio hasta 10 puntos, Evaluar el polinomio hasta 5 puntos, estimar el error por truncamiento hasta 5 puntos y estimar el error propagado hasta 5 puntos.

1Eva_IT2016_T3_MN Tasa interés anual

1ra Evaluación I Término 2016-2017. 28/junio/2016. ICM02188 Métodos Numéricos

Tema 3. (25 puntos) Se adquiere a maquinaria o equipo para una empresa por $35000, sin pago inicial, con pagos de $5800 por año durante 8 años.

¿Qué tasa de interés está usted pagando?

La fórmula que relaciona el valor presente P, las anualidades A, el número de años n y la tasa de interés i es:

A = P \frac{i(1+i)^{n}}{(1+i)^{n} -1}

a) Plantee la ecuación y encuentre un intervalo de existencia.
b) Encuentre un intervalo de convergencia
c) Realice cuatro iteraciones y estime el error

Rúbrica: Ecuación (5 puntos), intervalo existencia (2 puntos), Intervalo de convergencia (10 puntos), iteraciones (5 puntos), estimar error hasta (3 puntos)


Referencias:

La venta de tractores se mantiene. El comercio 24-Oct-2009. https://www.elcomercio.com/actualidad/venta-tractores-mantiene.html

La agricultura familiar campesina toma impulso en la provincia de Loja. Crónica.com.ec 31-ago-2018. https://www.cronica.com.ec/informacion-2/ciudad/item/22626-la-agricultura-familiar-campesina-toma-impulso-en-la-provincia-de-loja