4.3 Interpolación de Lagrange

Referencia: Chapra 18.2 pdf 540, Burden 9Ed 3.1 p108, Rodriguez 6.2 p195

El polinomio de interpolación de Lagrange es una reformulación del polinomio de interpolación de Newton, el método evita el cálculo de las diferencias divididas. El método tolera las diferencias entre las distancias x entre puntos.

El polinomio se construye a partir de las fórmulas:

f_{n} (x) = \sum_{i=0}^{n} L_{i} (x) f(x_{i}) L_{i} (x) = \prod_{j=0, j \neq i}^{n} \frac{x-x_j}{x_i - x_j}

Donde una vez que se han seleccionado los puntos a usar, se generan la misma cantidad de términos que puntos.


Ejemplo

Dados los 4 puntos en la tabla se requiere generar un polinomio de grado 3 de la forma:

p(x) = a_0 x^3 + a_1 x^2 + a_2 x^1 + a_3
xi 0 0.2 0.3 0.4
fi 1 1.6 1.7 2.0

Revisando la aplicación de la fórmula se tiene que calcular tres terminos,

término 1

L_{0} (x) = \frac{(x-0.2)(x-0.3)(x-0.4)}{(0-0.2)(0-0.3)(0-0.4)}

término 2

L_{1} (x) = \frac{(x-0)(x-0.3)(x-0.4)}{(0.2-0)(0.2-0.3)(0.2-0.4)}

término 3

L_{2} (x) = \frac{(x-0)(x-0.2)(x-0.4)}{(0.3-0)(0.3-0.2)(0.3-0.4)}

término 4

L_{3} (x) = \frac{(x-0)(x-0.2)(x-0.3)}{(0.4-0)(0.4-0.2)(0.4-0.3)}

se construye el polinomio usando la fórmula para fn(x) para cada valor fi,

p_3(x) = 1 L_{0} (x) + 1.6 L_{1} (x) + 1.7 L_{2} (x) + 2 L_{3} (x) p_3(x) = 1 \frac{(x-0.2)(x-0.3)(x-0.4)}{(0-0.2)(0-0.3)(0-0.4)} + + 1.6 \frac{(x-0)(x-0.3)(x-0.4)}{(0.2-0)(0.2-0.3)(0.2-0.4)} + 1.7 \frac{(x-0)(x-0.2)(x-0.4)}{(0.3-0)(0.3-0.2)(0.3-0.4)} + 2 \frac{(x-0)(x-0.2)(x-0.3)}{(0.4-0)(0.4-0.2)(0.4-0.3)}

La simplificación de la expresión del polinomio se puede dejar como tarea.

Una forma de verificar que el polinomio es correcto es usar un punto original xi[i] y comprobar que la evaluación tiene como resultado fi[i].

xi = np.array([0, 0.2, 0.3, 0.4])
fi = np.array([1, 1.6, 1.7, 2.0])

Algoritmo en Python

En el algoritmo en Python, para construir las expresiones de cada término se usa la forma simbólica con Sympy.

En cada término Li(x) se usan todos los elementos i , excepto el mismo elemento i, en el numerador y denominador de la expresión.

En polinomio se agrupan todos los términos multiplicados por su respectivo valor fi[i].

    valores de fi:  [1.  1.6 1.7 2. ]
divisores en L(i):  [-0.024  0.004 -0.003  0.008]

Polinomio de Lagrange, expresiones
400.0*x*(x - 0.4)*(x - 0.3) 
  - 566.666666666667*x*(x - 0.4)*(x - 0.2) 
  + 250.0*x*(x - 0.3)*(x - 0.2) 
  - 41.6666666666667*(x - 0.4)*(x - 0.3)*(x - 0.2)

Polinomio de Lagrange: 
41.666666666667*x**3 - 27.5*x**2 + 6.8333333333334*x + 1.0

Las expresiones del polinomio contiene los binomios en su forma básica, para resolver y simplificar las ecuaciones se usa polinomio.expand().

Para graficar el polinomio es conveniente convertirlo a la forma lambda con numpy, de esta forma se evalua en una sola linea todos los puntos para el intervalo [a,b] en x.

# Interpolacion de Lagrange
# divisoresL solo para mostrar valores
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt

# INGRESO , Datos de prueba
xi = np.array([0, 0.2, 0.3, 0.4])
fi = np.array([1, 1.6, 1.7, 2.0])

# PROCEDIMIENTO
# Polinomio de Lagrange
n = len(xi)
x = sym.Symbol('x')
polinomio = 0
divisorL = np.zeros(n, dtype = float)
for i in range(0,n,1):
    
    # Termino de Lagrange
    numerador = 1
    denominador = 1
    for j  in range(0,n,1):
        if (j!=i):
            numerador = numerador*(x-xi[j])
            denominador = denominador*(xi[i]-xi[j])
    terminoLi = numerador/denominador

    polinomio = polinomio + terminoLi*fi[i]
    divisorL[i] = denominador

# simplifica el polinomio
polisimple = polinomio.expand()

# para evaluación numérica
px = sym.lambdify(x,polisimple)

# Puntos para la gráfica
muestras = 101
a = np.min(xi)
b = np.max(xi)
pxi = np.linspace(a,b,muestras)
pfi = px(pxi)

# SALIDA
print('    valores de fi: ',fi)
print('divisores en L(i): ',divisorL)
print()
print('Polinomio de Lagrange, expresiones')
print(polinomio)
print()
print('Polinomio de Lagrange: ')
print(polisimple)

# Gráfica
plt.plot(xi,fi,'o', label = 'Puntos')
plt.plot(pxi,pfi, label = 'Polinomio')
plt.legend()
plt.xlabel('xi')
plt.ylabel('fi')
plt.title('Interpolación Lagrange')
plt.show()