1Eva_IT2004_T2 Verificar ISBN

Parcial I Término 2004 – 2005. Julio 06, 2004 /ICM00794

Tema 2. (25 puntos) El número estándar internacional de un libro (ISBN: International Standard Book Number) es un código de 10 dígitos. La última cifra es un dígito verificador que indica si el ISBN está correcto. isbn libro

El dígito verificador es obtenido mediante la operación residuo de S para 11, donde S es la suma de:

una vez el primer dígito,
mas dos veces el segundo dígito,
mas tres veces el tercer dígito,
. . . ,
mas nueve veces el noveno dígito.

Ejemplo:
 la suma S para el ISBN 9684443242 es:
 1*9+2*6+3*8+4*4+5*4+6*4+7*3+8*2+9*4 = 178
 El dígito verificador es el residuo(178/11) 
 que es igual a 2.

a) Escriba un algoritmo que lea un número ISBN que verifique si éste es o no correcto.

b) Realice la prueba de escritorio de su algoritmo, utilizando el ISBN 9701702533.


Referencia: ¿Qué es un ISBN? isbn-international.org. https://www.isbn-international.org/es/content/%C2%BFqu%C3%A9-es-un-isbn

 

1Eva_IT2004_T1 Aleatorios en región sombreada

Parcial I Término 2004 – 2005. Julio 06, 2004 /ICM00794

Tema 1. (25 puntos) Escriba un algoritmo que genere aleatoriamente 1000 pares ordenados (x,y), donde x e y son números reales con 2 cifras decimales, tales que: franjaplano

0.00 ≤ x ≤ 4.00

0.00 ≤ y ≤ 4.00

Su algoritmo deberá determinar la cantidad de puntos que se ubicaron dentro de la región sombreada mostrada en la figura.

Rúbrica: Generar n pares aleatorios (5 puntos), verificar punto debajo de frontera superior (5 puntos), verificar punto por encima de frontera inferior (5 puntos). Conteo de puntos en franja (5 puntos). Algoritmo estructurado (5 puntos)

1Eva_IIIT2003_T4 Dividir Polinomio usando Paolo Ruffini

Parcial III Término 2003 – 2004. Abril 02, 2004 /ICM00794

Tema 4. (25 Puntos) La regla de Paolo Ruffini sirve para realizar la división de un polinomio (de grado mayor que 1) para un binomio de la forma (x – a), ambos con coeficientes enteros.

Al dividir:
(x3 + 3x2 – x + 1)
para: (x – 2)

el coeficiente de la division es: (x2 + 5x + 9)
y el residuo es: 19

Escriba un algoritmo en seudo-código que realice lo siguiente:

a) Permita el ingreso de:

  • El grado n de un polinomio, validando que n sea entero mayor que 1 y menor que 10.
  • Los coeficientes de dicho polinomio en un arreglo de enteros (el orden de ingreso será desde los coeficientes del término de mayor grado hasta el término independiente).
  • El valor de a (entero) del divisor ( x – a )

b) Muestre por pantalla el resultado de la división (cociente y residuo).

Rúbrica: validar grado de polinomio (5 puntos), ingreso de coeficientes en arreglo (5 puntos) operaciones (10 puntos),  residuo correcto(5 puntos).

1Eva_IIIT2003_T3 Coordenadas enteras en un círculo

Parcial III Término 2003 – 2004. Abril 02, 2004 /ICM00794

Tema 3. (25 puntos) Escriba un algoritmo en seudo-código para determinar el número de puntos del plano cartesiano con coordenadas de valores enteros que pertenecen al círculo limitado por la circunferencia de ecuación

x^2 + y^2 = 100

(centro en el origen y radio 10).

Muestre también el promedio de las distancias de dichos puntos al origen de coordenadas.

Rúbrica: Manejo de índices enteros como coordenadas (5 puntos). control de intervalos de coordendas en dos dimensiones (5 puntos), manejo de contadores y condicionales (10 puntos), promedio de distancias (5 puntos).

1Eva_IIIT2003_T2 Verificar números triangulares

Parcial III Término 2003 – 2004. Abril 02, 2004 /ICM00794

Tema 2. (25 puntos) Considere la secuencia de números triangulares, cuyo nombre refleja su ley de formación:

1, 3, 6, 10, …


Escriba un algoritmo en seudo-código que indique si un número natural t, ingresado por teclado, es triangular.

Esto es, si es de la forma:

t = \sum_{i=1}^{n}i

para algún número natural n

Rúbrica: identificación de piso en operación (5 puntos), cálculo de usados (5 puntos), control de pisos construidos (5 puntos), validar s es triangular (5 puntos), algoritmo estructurado (5 puntos)

Referencia: Número triangular. Wikipedia

1Eva_IIIT2003_T1 Prueba de escritorio, conceptos

Parcial III Término 2003 – 2004. Abril 02, 2004 /ICM00794

Tema 1.

a) (10 puntos) Complete la siguiente Tabla de números escritos en diferentes bases numéricas:

Decimal Binario Octal Hexa- decimal
1568
A2D

b) (15 puntos) Muestre el contenido de los 10 valores del vector X al finalizar la siguiente secuencia de instrucciones:

Para j ← 1 hasta 3, incremento 1
    X[j] ← j - 1
fin
Para j ← 4 hasta 10, incremento 1
    X[j] ← X[j-3] - X[j-2] + X[j-1]
fin
Tabla para Prueba de Escritorio
j 1 2 3 4 5 6 7 8 9 10
X[j]

Rúbrica: literal a (2 puntos cada casilla). literal b, manejo de indices (2 puntos), manejo de vectores (5 puntos), interpretación de operaciones (5 puntos), valores completos (2 puntos).

1Eva_IIT2003_T4 Juego con icosaedros

Parcial II Término 2003 – 2004. Diciembre 09, 2003 /ICM00794

Tema 4. (30 puntos) Se requiere implementar un juego por computadora que consiste en generar aleatoriamente el lanzamiento de 2 icosaedros (poliedro regular de 20 caras triangulares).

Las caras están identificadas por color (azul, blanco, rojo o negro) y un número entero (1, 2, 3, 4 o 5).

Una vez lanzados y se han detenidos los dos icosaedros (lanzamientos simulados), considere las siguientes reglas para el juego:

  • Se observan las caras de la base:
  • Si coinciden los colores de las bases, el jugador gana 10 centavos.
  • Si coinciden los números de las bases, el jugador gana 10 centavos.
  • Si coinciden los colores y los números de las bases, el jugador gana 50 centavos.
  • Si la suma de los números de las bases es impar, el jugador gana 5 centavos más.

Para iniciar el juego, se debe presionar el número 1.

Para seguir jugando se debe presionar el número 2, y

Para terminar el juego se debe presionar el número 3.

Al final del juego se deberá mostrar el total pagado al Jugador y la cantidad de lanzamientos realizados.

A continuación se muestra una ejecución en pantalla del algoritmo que se debe construir:

Presione 1 para iniciar el juego: 1
 Icosaedro 1: 2 de color rojo
 Icosaedro 2: 4 de color rojo
 Jugador GANO 10 centavos

Presione 2 para lanzar, 3 para salir: 2
 Icosaedro 1: 3 de color azul
 Icosaedro 2: 3 de color negro
 Jugador GANO 10 centavos

Presione 2 para lanzar, 3 para salir: 2
 Icosaedro 1: 4 de color blanco
 Icosaedro 2: 4 de color blanco
 Jugador GANO 50 centavos

Presione 2 para lanzar, 3 para salir: 2 
 Icosaedro 1: 3 de color negro
 Icosaedro 2: 4 de color negro
 Jugador GANO 15 centavos

Presione 2 para lanzar, 3 para salir: 3
 El jugador GANO 85 centavos en 4 Lanzamientos

1Eva_IIT2003_T3 Personas asignadas a proyectos

Parcial II Término 2003 – 2004. Diciembre 09, 2003 /ICM00794

Tema 3. (25 puntos)

En una Matriz de orden nxm se quiere representar la relación de n personas y m proyectos. Los datos de la matriz pueden ser:

1: Persona asignada al proyecto,
0
: Persona no asignada al proyecto.

Escriba un algoritmo que realice lo siguiente:

a) Lea y valide los datos de la matriz.

b) Para cada proyecto, liste cuántas personas han sido asignadas.

c) Liste cuáles son las personas que No están Asignadas a proyecto alguno.

m
Matriz 1 2 3
1 0 1 0
2 1 0 0
3
Personas n 4

1Eva_IIT2003_T2 Sumar términos de progresión geométrica

Parcial II Término 2003 – 2004. Diciembre 09, 2003 /ICM00794

Tema 2. (20 puntos) Escriba un algoritmo que muestre por pantalla el resultado de la suma S de los términos de una progresión geométrica, de primer término a y razón r, con valores de i desde 0 hasta n.

El algoritmo debe solicitar al usuario los valores de a, n y r, y validar que r sea diferente de 1.

S = \sum_{i=0}^{n} a + ar + ar^2 + ar^3 + ... + ar^n

Referencia: UCC+1,Predicen la evolución de la progresión geométrica del COVID-19

1Eva_IIT2003_T1 Cambiar Decimal a Octal

Parcial II Término 2003 – 2004. Diciembre 09, 2003 /ICM00794

Tema 1. (25 puntos) Para realizar la conversión de un número que está en una determinada base a su equivalente decimal, debe emplearse la siguiente regla:

N = diBi + . . . + d4B4 + d3B3 + d2B2 + d1B1 + d0B0 
En donde: B: Base del sistema de numeración original
di: dígito en la posición i, con i = 0, 1, 2, …
(0 es la posición menos significativa)

Octal
Decimal
Ejemplo: para convertir 7648 a base 10: 
N = 7 x 82 + 6 x 81 + 4 x 80 = 50010

a) Escriba un Algoritmo que permita obtener el equivalente decimal (base 10) de un numero octal (entero de hasta 4 dígitos) ingresado por teclado.

Suponga que ya existe la función EsOctal(n), cuyo parámetro n es un valor entero y retorna 2 posibles valores:
1 = verdadero,
0 = falso,
según sea que n es válido o no en ese sistema de numeración.

b) Realice la prueba de escritorio del algoritmo construido en el literal a) para el siguiente ejemplo: 10348 = N10

Referencia: Bases Numéricas Introducción