s1Eva_IIT2019_T1 Ecuación Recursiva

Ejercicio: 1Eva_IIT2019_T1 Ecuación Recursiva

la ecuación recursiva es:

x_n = g(x_{n-1}) = \sqrt{3 + x_{n-1}}

literal a y b

g(x) es creciente en todo el intervalo, con valor minimo en g(1) = 2, y máximo en g(3) =2.449. Por observación de la gráfica, la pendiente g(x) es menor que la recta identidad en todo el intervalo

Verifique la cota de g'(x)

g(x) = \sqrt{3 + x} =(3+x)^{1/2} g'(x) =\frac{1}{2}(3+x)^{-1/2} g'(x) =\frac{1}{2\sqrt{3+x}}

Tarea: verificar que g'(x) es menor que 1 en todo el intervalo.

Literal c

Usando el algoritmo del punto fijo, iniciando con el punto x0=2
y tolerancia de 10-4, se tiene que:

Iteración 1: x0=2

g(x_0) = \sqrt{3 + 2} = 2.2361

error = |2.2361 – 2| = 0.2361

Iteración 2: x1 = 2.2361

g(x_1) = \sqrt{3 + 2.2361} = 2.2882

error = |2.2882 – 2.2361| = 0.0522

Iteración 3: x2 = 2.2882

g(x_2) = \sqrt{3 + 2.2882} = 2.2996

error = |2.2996 – 2.28821| = 0.0114

Iteración 4: x3 = 2.2996

g(x_3) = \sqrt{3 + 2.2996} = 2.3021

error = |2.3021- 2.2996| = 0.0025

Iteración 5: x4 = 2.3021

g(x_4) = \sqrt{3 + 2.3021} = 2.3026

error = |2.3021- 2.2996| = 5.3672e-04

con lo que determina que el error en la 5ta iteración es de 5.3672e-04 y el error se reduce en casi 1/4 entre iteraciones. El punto fijo converge a 2.3028

Se muestra como referencia la tabla resumen.

[[ x ,   g(x), 	 tramo  ] 
 [1.      2.      1.    ]
 [2.      2.2361  0.2361]
 [2.2361  2.2882  0.0522]
 [2.2882  2.2996  0.0114]
 [2.2996  2.3021  0.0025]
 [2.3021  2.3026  5.3672e-04]
 [2.3026  2.3027  1.1654e-04]
 [2.3027  2.3028  2.5305e-05]
raiz:  2.3027686193257098

con el siguiente comportamiento de la funcion:

literal e

Realizando el mismo ejercicio para el método de la bisección, se requiere cambiar a la forma f(x)=0

x = \sqrt{3 + x} 0 = \sqrt{3 + x} -x f(x) = \sqrt{3 + x} -x

tomando como intervalo el mismo que el inicio del problema [1,3], al realizar las operaciones se tiene que:

a = 1 ; f(a) = 1
b = 3 ; f(b) = -0.551
c = (a+b)/2 = (1+3)/2 = 2
f(c) = f(2) = (3 + 2)^(.5) +2 = 0.236
Siendo f(c) positivo, y tamaño de paso 2, se reduce a 1

a = 2 ; f(a) = 0.236
b = 3 ; f(b) = -0.551
c = (a+b)/2 = (2+3)/2 = 2.5
f(c) = f(2.5) = (3 + 2.5)^(.5) +2.5 = -0.155
Siendo fc(c) negativo y tamaño de paso 1, se reduce a .5

a = 2
b = 2.5
...

Siguiendo las operaciones se obtiene la siguiente tabla:

[ i, a,   c,   b,    f(a),  f(c),  f(b), paso]
 1 1.000 2.000 3.000 1.000  0.236 -0.551 2.000 
 2 2.000 2.500 3.000 0.236 -0.155 -0.551 1.000 
 3 2.000 2.250 2.500 0.236  0.041 -0.155 0.500 
 4 2.250 2.375 2.500 0.041 -0.057 -0.155 0.250 
 5 2.250 2.312 2.375 0.041 -0.008 -0.057 0.125 
 6 2.250 2.281 2.312 0.041  0.017 -0.008 0.062 
 7 2.281 2.297 2.312 0.017  0.005 -0.008 0.031 
 8 2.297 2.305 2.312 0.005 -0.001 -0.008 0.016 
 9 2.297 2.301 2.305 0.005  0.002 -0.001 0.008 
10 2.301 2.303 2.305 0.002  0.000 -0.001 0.004 
11 2.303 2.304 2.305 0.000 -0.001 -0.001 0.002 
12 2.303 2.303 2.304 0.000 -0.000 -0.001 0.001 
13 2.303 2.303 2.303 0.000 -0.000 -0.000 0.000 
14 2.303 2.303 2.303 0.000 -0.000 -0.000 0.000 
15 2.303 2.303 2.303 0.000 -0.000 -0.000 0.000 
16 2.303 2.303 2.303 0.000  0.000 -0.000 0.000 
raiz:  2.302764892578125

Donde se observa que para la misma tolerancia de 10-4, se incrementan las iteraciones a 16. Mientra que con punto fijo eran solo 8.

Nota: En la evaluación solo se requeria calcular hasta la 5ta iteración. Lo presentado es para fines didácticos

s1Eva_IIT2019_T3 Circuito eléctrico

Ejercicio: 1Eva_IIT2019_T3 Circuito eléctrico

Las ecuaciones del problema son:

55 I_1 - 25 I_4 =-200 -37 I_3 - 4 I_4 =-250 -25 I_1 - 4 I_3 +29 I_4 =100 I_2 =-10

Planteo del problema en la forma A.X=B

A = [[ 55.0, 0,  0, -25],
     [  0  , 0,-37,  -4],
     [-25  , 0, -4,  29],
     [  0  ,  1, 0,   0]]

B = [-200,-250,100,-10]

El ejercicio se puede simplificar con una matriz de 3×3 dado que una de las corrientes I2 es conocida con valor -10, queda resolver el problema para
[I1 ,I3 ,I4 ]

A = [[ 55.0,   0, -25],
     [  0  , -37,  -4],
     [-25  ,  -4,  29]]

B = [-200,-250,100]

conformando la matriz aumentada

[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]

que se pivotea por filas para acercar a matriz diagonal dominante:

[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]

Literal a

Para métodos directos se aplica el método de eliminación hacia adelante.

Usando el primer elemento en la diagonal se convierten en ceros los números debajo de la posición primera de la diagonal

[[  55.    0.  -25.         -200.      ]
 [   0.  -37.   -4.         -250.      ]
 [   0.   -4.   17.636363      9.090909]]

luego se continúa con la segunda columna:

[[  55.    0.  -25.         -200.      ]
 [   0.  -37.   -4.         -250.      ]
 [   0.    0.   18.068796     36.117936]]

y para el método de Gauss se emplea sustitución hacia atrás
se determina el valor de I4

18.068796 I_4 = 36.11793612 I_4 =\frac{36.11793612}{18.068796}= 1.99891216 -37 I_3 -4 I_4 = -250 -37 I_3= -250 + 4 I_4 I_3=\frac{-250 + 4 I_4}{-37} I_3=\frac{-250 + 4 (1.99891216)}{-37} = 6.54065815

y planteando se obtiene el último valor

55 I_1 +25 I_4 = -200 55 I_1 = -200 -25 I_4 I_1 = \frac{-200 -25 I_4}{55} I_1 = \frac{-200 -25(1.99891216)}{55} = -2.7277672

con lo que el vector solución es:

[-2.7277672   6.54065815  1.99891216]

sin embargo, para verificar la respuesta se aplica A.X=B

verificar que A.X = B, obteniendo nuevamente el vector B.
[-200.  -250.  100.]]

literal b

La norma de la matriz infinito se determina como:

||x|| = max\Big[ |x_i| \Big]

considere que en el problema el término en A de magnitud mayor es 55.
El vector suma de filas es:

[[| 55|+|  0|+|-25|],    [[80],
 [|  0|+|-37|+| -4|],  =  [41],
 [[-25|+| -4|+| 29|]]     [58]]

por lo que la norma ∞ ejemplo ||A||∞ 
es el maximo de suma de filas: 80

para revisar la estabilidad de la solución, se observa el número de condición

>>> np.linalg.cond(A)
4.997509004325602

En éste caso no está muy alejado de 1. De resultar alejado del valor ideal de uno,  la solución se considera poco estable. Pequeños cambios en la entrada del sistema generan grandes cambios en la salida.

Tarea: Matriz de transición de Jacobi


Literal c

En el método de Gauss-Seidel acorde a lo indicado, se inicia con el vector cero. Como no se indica el valor de tolerancia para el error, se considera tolera = 0.0001

las ecuaciones para el método son:

I_1 =\frac{-200 + 25 I_4}{55} I_3 = \frac{-250+ 4 I_4}{-37} I_4 =\frac{100 +25 I_1 + 4 I_3}{29}

Como I2 es constante, no se usa en las iteraciones

I_2 =-10

teniendo como resultados de las iteraciones:

Matriz aumentada
[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]
Pivoteo parcial:
  Pivoteo por filas NO requerido
Iteraciones Gauss-Seidel
itera,[X]
      diferencia,errado
0 [0. 0. 0.] 2e-05
1 [-3.6363636  6.7567568  1.2454461]
   [3.6363636 6.7567568 1.2454461] 6.756756756756757
2 [-3.0702518  6.6221139  1.7149021]
   [0.5661119 0.1346428 0.469456 ] 0.5661118513783094
3 [-2.8568627  6.5713619  1.891858 ]
   [0.2133891 0.050752  0.1769559] 0.2133891067340583
4 [-2.7764282  6.5522316  1.9585594]
   [0.0804345 0.0191304 0.0667014] 0.08043447732439457
5 [-2.7461094  6.5450206  1.9837016]
   [0.0303188 0.007211  0.0251423] 0.030318816370094925
6 [-2.7346811  6.5423025  1.9931787]
   [0.0114283 0.0027181 0.0094771] 0.011428316023939011
7 [-2.7303733  6.541278   1.996751 ]
   [0.0043078 0.0010246 0.0035723] 0.004307767346479974
8 [-2.7287495  6.5408918  1.9980975]
   [0.0016238 0.0003862 0.0013465] 0.001623761494915943
9 [-2.7281375  6.5407462  1.9986051]
   [0.0006121 0.0001456 0.0005076] 0.0006120575185017962
10 [-2.7279068  6.5406913  1.9987964]
   [2.3070778e-04 5.4871039e-05 1.9131760e-04] 0.00023070777766820427
11 [-2.7278198  6.5406707  1.9988685]
   [8.6962544e-05 2.0682983e-05 7.2114885e-05] 8.696254366213907e-05
12 [-2.727787   6.5406629  1.9988957]
   [3.2779493e-05 7.7962038e-06 2.7182845e-05] 3.277949307367578e-05
13 [-2.7277747  6.5406599  1.998906 ]
   [1.2355839e-05 2.9386860e-06 1.0246249e-05] 1.235583874370505e-05
14 [-2.72777    6.5406588  1.9989098]
   [4.6573860e-06 1.1077026e-06 3.8622013e-06] 4.6573859666665385e-06
numero de condición: 4.997509004325604
respuesta con Gauss-Seidel
[-2.72777    6.5406588  1.9989098]
>>>

con lo que el vector resultante es:

respuesta con Gauss-Seidel
[-2.72777 6.5406588 1.9989098]

que para verificar, se realiza la operación A.X
observando que el resultado es igual a B

[[-200.00002751]
 [-249.9999956 ]
 [ 100.0000125 ]]


Solución alterna


Usando la matriz de 4×4, los resultados son iguales para las corrientes
[I1 ,I2 , I3 ,I4 ]. Realizando la matriz aumentada,

[[  55.    0.    0.  -25. -200.]
 [   0.    0.  -37.   -4. -250.]
 [ -25.    0.   -4.   29.  100.]
 [   0.    1.    0.    0.  -10.]]

que se pivotea por filas para acercar a matriz diagonal dominante:

[[  55.    0.    0.  -25. -200.]
 [   0.    1.    0.    0.  -10.]
 [   0.    0.  -37.   -4. -250.]
 [ -25.    0.   -4.   29.  100.]]

Literal a

Para métodos directos se aplica el método de eliminación hacia adelante.

Usando el primer elemento  en la diagonal.

[[  55.     0.     0.   -25.         -200.        ]
 [   0.     1.     0.     0.          -10.        ]
 [   0.     0.   -37.    -4.         -250.        ]
 [   0.     0.    -4.    17.63636364    9.09090909]]

para el segundo no es necesario, por debajo se encuentran valores cero.
Por lo que se pasa al tercer elemento de la diagonal

[[  55.     0.     0.     -25.         -200.        ]
 [   0.     1.     0.      0.          -10.        ]
 [   0.     0.   -37.     -4.         -250.        ]
 [   0.     0.     0.     18.06879607    36.11793612]]

y para el método de Gauss se emplea sustitución hacia atras.
para x4:

18.06879607 x_4 = 36.11793612 x_4 = 1.99891216

para x3:

-37 x_3 -4 x_3 = -250 37 x_3 = 250-4 x_4 = 250-4(1.99891216) x_3 = 6.54065815

como ejercicio, continuar con x1, dado que x2=-10

55 x_1 + 25 x_4 = -200

El vector solución obtenido es:

el vector solución X es:
[[ -2.7277672 ]
 [-10.        ]
 [  6.54065815]
 [  1.99891216]]

sin embargo, para verificar la respuesta se aplica A.X=B.

[[-200.]
 [-250.]
 [ 100.]
 [ -10.]]

Se revisa el número de condición de la matriz:

>>> np.linalg.cond(A)
70.21827416891405

Y para éste caso, el número de condición se encuentra alejado del valor 1, contrario a la respuesta del la primera forma de solución con la matriz 3×3. De resultar alejado del valor ideal de uno, la solución se considera poco estable. Pequeños cambios en la entrada del sistema generan grandes cambios en la salida.


Algoritmo en Python

Presentado por partes para revisión:

Para el método de Gauss, los resultados del algoritmo se muestran como:

Matriz aumentada
[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]
Pivoteo parcial:
  Pivoteo por filas NO requerido
Elimina hacia adelante:
 fila 0 pivote:  55.0
   factor:  0.0  para fila:  1
   factor:  -0.45454545454545453  para fila:  2
 fila 1 pivote:  -37.0
   factor:  0.10810810810810811  para fila:  2
 fila 2 pivote:  18.06879606879607
[[  55.            0.          -25.         -200.        ]
 [   0.          -37.           -4.         -250.        ]
 [   0.            0.           18.06879607   36.11793612]]
solución: 
[-2.7277672   6.54065815  1.99891216]

Instrucciones en Python usando las funciones creadas en la unidad:

# 1Eva_IIT2019_T3 Circuito eléctrico
# Método de Gauss
# Solución a Sistemas de Ecuaciones
# de la forma A.X=B
import numpy as np

def pivoteafila(A,B,vertabla=False):
    '''
    Pivotea parcial por filas
    Si hay ceros en diagonal es matriz singular,
    Tarea: Revisar si diagonal tiene ceros
    '''
    A = np.array(A,dtype=float)
    B = np.array(B,dtype=float)
    # Matriz aumentada
    nB = len(np.shape(B))
    if nB == 1:
        B = np.transpose([B])
    AB  = np.concatenate((A,B),axis=1)
    
    if vertabla==True:
        print('Matriz aumentada')
        print(AB)
        print('Pivoteo parcial:')
    
    # Pivoteo por filas AB
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    # Para cada fila en AB
    pivoteado = 0
    for i in range(0,n-1,1):
        # columna desde diagonal i en adelante
        columna = np.abs(AB[i:,i])
        dondemax = np.argmax(columna)
        
        # dondemax no es en diagonal
        if (dondemax != 0):
            # intercambia filas
            temporal = np.copy(AB[i,:])
            AB[i,:] = AB[dondemax+i,:]
            AB[dondemax+i,:] = temporal

            pivoteado = pivoteado + 1
            if vertabla==True:
                print(' ',pivoteado, 'intercambiar filas: ',i,'y', dondemax+i)
    if vertabla==True:
        if pivoteado==0:
            print('  Pivoteo por filas NO requerido')
        else:
            print(AB)
    return(AB)

def gauss_eliminaAdelante(AB,vertabla=False, casicero = 1e-15):
    ''' Gauss elimina hacia adelante
    tarea: verificar términos cero
    '''
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    if vertabla==True:
        print('Elimina hacia adelante:')
    for i in range(0,n,1):
        pivote = AB[i,i]
        adelante = i+1
        if vertabla==True:
            print(' fila',i,'pivote: ', pivote)
        for k in range(adelante,n,1):
            if (np.abs(pivote)>=casicero):
                factor = AB[k,i]/pivote
                AB[k,:] = AB[k,:] - factor*AB[i,:]
                if vertabla==True:
                    print('   factor: ',factor,' para fila: ',k)
            else:
                print('  pivote:', pivote,'en fila:',i,
                      'genera division para cero')
    if vertabla==True:
        print(AB)
    return(AB)

def gauss_sustituyeAtras(AB,vertabla=False, casicero = 1e-15):
    ''' Gauss sustituye hacia atras
    '''
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    # Sustitución hacia atras
    X = np.zeros(n,dtype=float) 
    ultfila = n-1
    ultcolumna = m-1
    for i in range(ultfila,0-1,-1):
        suma = 0
        for j in range(i+1,ultcolumna,1):
            suma = suma + AB[i,j]*X[j]
        X[i] = (AB[i,ultcolumna]-suma)/AB[i,i]
    return(X)

# INGRESO
A = [[ 55.0,   0, -25],
     [  0  , -37,  -4],
     [-25  ,  -4,  29]]

B = [-200,-250,100]

# PROCEDIMIENTO
AB = pivoteafila(A,B,vertabla=True)

AB = gauss_eliminaAdelante(AB,vertabla=True)

X = gauss_sustituyeAtras(AB,vertabla=True)

# SALIDA
print('solución: ')
print(X)

literal c

Resultados con el algoritmo de Gauss Seidel

Matriz aumentada
[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]
Pivoteo parcial:
  Pivoteo por filas NO requerido
Iteraciones Gauss-Seidel
itera,[X]
      diferencia,errado
0 [0. 0. 0.] 2e-05
1 [-3.6363636  6.7567568  1.2454461]
   [3.6363636 6.7567568 1.2454461] 6.756756756756757
2 [-3.0702518  6.6221139  1.7149021]
   [0.5661119 0.1346428 0.469456 ] 0.5661118513783094
3 [-2.8568627  6.5713619  1.891858 ]
   [0.2133891 0.050752  0.1769559] 0.2133891067340583
4 [-2.7764282  6.5522316  1.9585594]
   [0.0804345 0.0191304 0.0667014] 0.08043447732439457
5 [-2.7461094  6.5450206  1.9837016]
   [0.0303188 0.007211  0.0251423] 0.030318816370094925
6 [-2.7346811  6.5423025  1.9931787]
   [0.0114283 0.0027181 0.0094771] 0.011428316023939011
7 [-2.7303733  6.541278   1.996751 ]
   [0.0043078 0.0010246 0.0035723] 0.004307767346479974
8 [-2.7287495  6.5408918  1.9980975]
   [0.0016238 0.0003862 0.0013465] 0.001623761494915943
9 [-2.7281375  6.5407462  1.9986051]
   [0.0006121 0.0001456 0.0005076] 0.0006120575185017962
10 [-2.7279068  6.5406913  1.9987964]
   [2.3070778e-04 5.4871039e-05 1.9131760e-04] 0.00023070777766820427
11 [-2.7278198  6.5406707  1.9988685]
   [8.6962544e-05 2.0682983e-05 7.2114885e-05] 8.696254366213907e-05
12 [-2.727787   6.5406629  1.9988957]
   [3.2779493e-05 7.7962038e-06 2.7182845e-05] 3.277949307367578e-05
13 [-2.7277747  6.5406599  1.998906 ]
   [1.2355839e-05 2.9386860e-06 1.0246249e-05] 1.235583874370505e-05
14 [-2.72777    6.5406588  1.9989098]
   [4.6573860e-06 1.1077026e-06 3.8622013e-06] 4.6573859666665385e-06
numero de condición: 4.997509004325604
respuesta con Gauss-Seidel
[-2.72777    6.5406588  1.9989098]
>>> 

Instrucciones en Python

# 1Eva_IIT2019_T3 Circuito eléctrico
# Algoritmo Gauss-Seidel
# solución de matrices
# métodos iterativos
# Referencia: Chapra 11.2, p.310,
#      Rodriguez 5.2 p.162
import numpy as np

def gauss_seidel(A,B,X0,tolera, iteramax=100,
                 vertabla=False, precision=4):
    ''' Método de Gauss Seidel, tolerancia, vector inicial X0
        para mostrar iteraciones: vertabla=True
    '''
    A = np.array(A, dtype=float)
    B = np.array(B, dtype=float)
    X0 = np.array(X0, dtype=float)
    tamano = np.shape(A)
    n = tamano[0]
    m = tamano[1]
    diferencia = 2*tolera*np.ones(n, dtype=float)
    errado = np.max(diferencia)
    X = np.copy(X0)

    itera = 0
    if vertabla==True:
        print('Iteraciones Gauss-Seidel')
        print('itera,[X]')
        print('      diferencia,errado')
        print(itera, X, errado)
        np.set_printoptions(precision)
    while (errado>tolera and itera<iteramax):
        for i in range(0,n,1):
            xi = B[i]
            for j in range(0,m,1):
                if (i!=j):
                    xi = xi-A[i,j]*X[j]
            xi = xi/A[i,i]
            diferencia[i] = np.abs(xi-X[i])
            X[i] = xi
        errado = np.max(diferencia)
        itera = itera + 1
        if vertabla==True:
            print(itera, X)
            print('  ', diferencia, errado)
    # No converge
    if (itera>iteramax):
        X=itera
        print('iteramax superado, No converge')
    return(X)

def pivoteafila(A,B,vertabla=False):
    '''
    Pivotea parcial por filas, entrega matriz aumentada AB
    Si hay ceros en diagonal es matriz singular,
    Tarea: Revisar si diagonal tiene ceros
    '''
    A = np.array(A,dtype=float)
    B = np.array(B,dtype=float)
    # Matriz aumentada
    nB = len(np.shape(B))
    if nB == 1:
        B = np.transpose([B])
    AB  = np.concatenate((A,B),axis=1)
    
    if vertabla==True:
        print('Matriz aumentada')
        print(AB)
        print('Pivoteo parcial:')
    
    # Pivoteo por filas AB
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    # Para cada fila en AB
    pivoteado = 0
    for i in range(0,n-1,1):
        # columna desde diagonal i en adelante
        columna = np.abs(AB[i:,i])
        dondemax = np.argmax(columna)
        
        # dondemax no es en diagonal
        if (dondemax != 0):
            # intercambia filas
            temporal = np.copy(AB[i,:])
            AB[i,:] = AB[dondemax+i,:]
            AB[dondemax+i,:] = temporal

            pivoteado = pivoteado + 1
            if vertabla==True:
                print(' ',pivoteado, 'intercambiar filas: ',i,'y', dondemax+i)
    if vertabla==True:
        if pivoteado==0:
            print('  Pivoteo por filas NO requerido')
        else:
            print('AB')
    return(AB)

# INGRESO
A = [[ 55.0,   0, -25],
     [  0  , -37,  -4],
     [-25  ,  -4,  29]]

B = [-200,-250,100]

X0  = [0.,0.,0.]

tolera = 0.00001
iteramax = 100
verdecimal = 7

# PROCEDIMIENTO
# numero de condicion
ncond = np.linalg.cond(A)

AB = pivoteafila(A,B,vertabla=True)
# separa matriz aumentada en A y B
[n,m] = np.shape(AB)
A = AB[:,:m-1]
B = AB[:,m-1]

respuesta = gauss_seidel(A,B,X0, tolera,
                         vertabla=True, precision=verdecimal)

# SALIDA
print('numero de condición:', ncond)
print('respuesta con Gauss-Seidel')
print(respuesta)

.

s1Eva_IIT2019_T2 Proceso Termodinámico

Ejercicio: 1Eva_IIT2019_T2 Proceso Termodinámico

la ecuación para el problema se describe como:

f(x)=e^{-0.5x}

ecuación que se usa para describir los siguientes puntos:

x 0 1 2 3 4
f(x) 1 0.60653065 0.36787944 0.22313016  0.13533528

Como el polinomio es de grado 2, se utilizan tres puntos. Para cubrir el intervalo los puntos seleccionados incluyen los extremos y el punto medio.

literal a

Con los puntos seleccionados se escriben las ecuaciones del polinomio:

p_2(x)= a_0 x^2 + a_1 x + a_2

usando los valores de la tabla:

p_2(0)=a_0 (0)^2 + a_1 (0) + a_2 = 1 p_2(2)=a_0 (2)^2 + a_1 (2) + a_2 = 0.36787944 p_2(4)=a_0 (4)^2 + a_1 (4) + a_2 = 0.13533528

con la que se escribe la matriz Vandermonde con la forma A.x=B

A= [[ 0.,  0.,  1.,]
    [ 4.,  2.,  1.,]
    [16.,  4.,  1.,]]

B= [[1.        ],
    [0.36787944],
    [0.13533528]]) 

matriz aumentada

[[ 0.,  0.,  1.,  1.        ]
 [ 4.,  2.,  1.,  0.36787944]
 [16.,  4.,  1.,  0.13533528]]

matriz pivoteada

[[16.,  4.,  1.,  0.13533528]
 [ 4.,  2.,  1.,  0.36787944]
 [ 0.,  0.,  1.,  1.        ]]

Resolviendo por algún método directo, la solución proporciona los coeficientes del polinomio

Tarea: escribir la solución del método directo, semejante a la presentada en el tema 3

[ 0.04994705 -0.41595438  1.        ]

con lo que el polinomio de interpolación es:

p_2(x) = 0.04994705 x^2 - 0.41595438 x + 1.0

en el enunciado se requiere la evaluación en x=2.4

p_2(2.4) = 0.04994705 (2.4)^2 - 0.41595438 (2.4) + 1.0 f(2.4)=e^{-0.5(2.4)} error = |f(2.4)-p_2(2.4)|
Evaluando en X1:  2.4
Evaluando p(x1):  0.2894044975129779
Error en x1:      0.011789714399224216
 Error relativo:  0.039143230291095066

La diferencia entre la función y el polinomio de interpolación se puede observar en la gráfica:
s1eIIT2019T2_grafica


literal b

Tarea: Encontrar la cota de error con f(1.7)


Algoritmo en Python

Resultado con el algoritmo

Matriz Vandermonde: 
[[ 0.  0.  1.]
 [ 4.  2.  1.]
 [16.  4.  1.]]
los coeficientes del polinomio: 
[ 0.04994705 -0.41595438  1.        ]
Polinomio de interpolación: 
0.049947050111716*x**2 - 0.415954379637711*x + 1.0

 formato pprint
                   2                            
0.049947050111716*x  - 0.415954379637711*x + 1.0

Evaluando en X1:  2.4
Evaluando p(x1):  0.2894044975129779
Error en x1:      0.011789714399224216
 Error relativo:  0.039143230291095066

Evaluando en X2:  1.7
Evaluando p(x2):  0.2894044975129779
Error en x2:      0.011789714399224216
 Error relativo:  0.039143230291095066

Presentado por secciones, semejante a lo desarrollado en clases

# 1Eva_IIT2019_T2 Proceso Termodinámico
# El polinomio de interpolación
import numpy as np
import sympy as sym

# INGRESO
fx = lambda x: np.exp(-0.5*x)
xi =np.array([0,2,4],dtype=float)

# determina vector
fi= fx(xi)

# PROCEDIMIENTO
# Convierte a arreglos numpy 
xi = np.array(xi,dtype=float)
fi = np.array(fi,dtype=float)

B = fi
n = len(xi)

# Matriz Vandermonde D
D = np.zeros(shape=(n,n),dtype=float)
for i in range(0,n,1):
    for j in range(0,n,1):
        potencia = (n-1)-j # Derecha a izquierda
        D[i,j] = xi[i]**potencia

# Aplicar métodos Unidad03. Tarea
# Resuelve sistema de ecuaciones A.X=B
coeficiente = np.linalg.solve(D,B)

# Polinomio en forma simbólica
x = sym.Symbol('x')
polinomio = 0
for i in range(0,n,1):
    potencia = (n-1)-i   # Derecha a izquierda
    termino = coeficiente[i]*(x**potencia)
    polinomio = polinomio + termino

# Polinomio a forma Lambda x:
# para evaluación con vectores de datos xin
muestras = 21
px = sym.lambdify(x,polinomio)

# SALIDA
print('Matriz Vandermonde: ')
print(D)
print('los coeficientes del polinomio: ')
print(coeficiente)
print('Polinomio de interpolación: ')
print(polinomio)
print('\n formato pprint')
sym.pprint(polinomio)


# literal b
x1 = 2.4
px1 = px(x1)
fx1 = fx(x1)
errorx1 = np.abs(px1-fx1)
errorx1rel = errorx1/fx1
x2 = 1.7
px2 = px(x1)
fx2 = fx(x1)
errorx2 = np.abs(px1-fx1)
errorx2rel = errorx1/fx1
print()
print('Evaluando en X1: ',x1)
print('Evaluando p(x1): ',px1)
print('Error en x1:     ',errorx1)
print(' Error relativo: ', errorx1rel)
print()
print('Evaluando en X2: ',x2)
print('Evaluando p(x2): ',px2)
print('Error en x2:     ',errorx2)
print(' Error relativo: ', errorx2rel)


# GRAFICA
import matplotlib.pyplot as plt
a = np.min(xi)
b = np.max(xi)
xin = np.linspace(a,b,muestras)
yin = px(xin)

# Usando evaluación simbólica
##yin = np.zeros(muestras,dtype=float)
##for j in range(0,muestras,1):
##    yin[j] = polinomio.subs(x,xin[j])

plt.plot(xi,fi,'o', label='[xi,fi]')
plt.plot(xin,yin, label='p(x)')
plt.plot(xin,fx(xin), label='f(x)')
plt.xlabel('xi')
plt.ylabel('fi')
plt.legend()
plt.title(polinomio)
plt.show()

 

s1Eva_IIT2019_T4 Concentración de químico

Ejercicio: 1Eva_IIT2019_T4 Concentración de químico

formula a usar:

C = C_{ent} ( 1 - e^{-0.04t})+C_{0} e^{-0.03t}

Se sustituyen los valores dados con:
C0 = 4, Cent = 10, C = 0.93 Cent.

0.93(10) = 10 ( 1 - e^{-0.04t}) + 4 e^{-0.03t}

igualando a cero para forma estandarizada del algoritmo,

10( 1 - e^{-0.04t}) + 4 e^{-0.03t} - 9.3 = 0 0.7 - 10 e^{-0.04t} + 4 e^{-0.03t} = 0

se usas las funciones f(t) y f'(t) para el método de Newton-Raphson,

f(t) = 0.7 - 10 e^{-0.04t} + 4 e^{-0.03t} f'(t) = - 10(-0.04) e^{-0.04t} + 4(-0.03) e^{-0.03t} f'(t) = 0.4 e^{-0.04t} - 0.12 e^{-0.03t}

con lo que se pueden realizar los cálculos de forma iterativa.

t_{i+1} = t_i -\frac{f(t_i)}{f'(t_i)}

De no disponer de la gráfica de f(t), y se desconoce el valor inicial para t0 se usa 0. Como no se indica la tolerancia, se estima en 10-4

Iteración 1

t0 = 0

f(0) = 0.7 - 10 e^{-0.04(0)} + 4 e^{-0.03(0)} = 5.3 f'(0) = 0.4 e^{-0.04(0)} - 0.12 e^{-0.03(0)} = -0.28 t_{1} = 0 -\frac{5.3}{-0.28} = 18.92 error = |18.92-0| = 18.92

Iteración 2

f(18.92) = 0.7 - 10 e^{-0.04(18.92)} + 4 e^{-0.03(18.92)} = -1.72308 f'(18.92) = 0.4 e^{-0.04(18.92)} - 0.12 e^{-0.03(18.92)} = 0.119593 t_{2} = 18.92 -\frac{-1.723087}{0.119593} = 33.3365 error = |33.3365 - 18.92| = 14.4079

Iteración 3

f(33.3365) = 0.7 - 10 e^{-0.04(33.3365)} + 4 e^{-0.03(33.3365)} = -0.4642 f'(33.3365) = 0.4 e^{-0.04(33.3365)} - 0.12 e^{-0.03(33.3365)} = 0.06128 t_{3} = 33.3365 -\frac{-0.46427}{-5.8013} = 40.912 error = |40.912 - 33.3365| = 7.5755

Observando que los errores disminuyen entre cada iteración, se encuentra que el método converge.

y se forma la siguiente tabla:

['xi' ,  'xnuevo', 'error']
[ 0.      18.9286  18.9286]
[18.9286  33.3365  14.4079]
[33.3365  40.912    7.5755]
[40.912   42.654     1.742]
[42.654   42.7316   0.0776]
[4.2732e+01 4.2732e+01 1.4632e-04]
raiz en:  42.731721341402796

Observando la gráfica de la función puede observar el resultado:


Algoritmo en Python

# 1Eva_IIT2019_T4
# Método de Newton-Raphson

import numpy as np
import matplotlib.pyplot as plt

# INGRESO
fx = lambda t: 0.7-10*np.exp(-0.04*t)+4*np.exp(-0.03*t)
dfx = lambda t:0.40*np.exp(-0.04*t)-0.12*np.exp(-0.03*t)

x0 = 0
tolera = 0.001

a = 0
b = 60
muestras = 21

# PROCEDIMIENTO
tabla = []
tramo = abs(2*tolera)
xi = x0
while (tramo>=tolera):
    xnuevo = xi - fx(xi)/dfx(xi)
    tramo = abs(xnuevo-xi)
    tabla.append([xi,xnuevo,tramo])
    xi = xnuevo

tabla = np.array(tabla)
n=len(tabla)

# para la gráfica
xk = np.linspace(a,b,muestras)
fk = fx(xk)

# SALIDA
print(['xi', 'xnuevo', 'error'])
np.set_printoptions(precision = 4)
for i in range(0,n,1):
    print(tabla[i])
print('raiz en: ', xi)

# grafica
plt.plot(xk,fk)
plt.axhline(0, color='black')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.show()

s1Eva_IT2019_T3 Vector perpendicular a plano

Ejercicio: 1Eva_IT2019_T3 Vector perpendicular a plano

Literal a

Para que un vector sea perpendicular a otro, se debe cumplir que
V1.V2 =0.

\begin{bmatrix} 2 \\ -3 \\ a \end{bmatrix} . \begin{bmatrix} b \\ 1 \\ -4 \end{bmatrix} = 0

se obtiene entonces la ecuación:

(2)(b)+(-3)(1)+(a)(-4)=0
2b -3 -4a =0

procediendo de la misma forma con los siguientes pares de vectores:

\begin{bmatrix} 2 \\ -3 \\ a \end{bmatrix} . \begin{bmatrix} 3 \\ c \\ 2 \end{bmatrix} = 0

se obtiene entonces la ecuación:

(2)(3)+(-3)(c)+(a)(2)=0
6 -3c +2a = 0
\begin{bmatrix} b \\ 1 \\ -4 \end{bmatrix} . \begin{bmatrix} 3 \\ c \\ 2 \end{bmatrix} = 2

se obtiene entonces la ecuación:

(b)(3)+(1)(c)+(-4)(2)=2
3b +c -8 =2

se obtiene el sistema de ecuaciones:

\begin{cases}-4a+2b=3 \\ 2a-3c=-6 \\3b+c=10 \end{cases}

Literal b

Se convierte a la forma matricial Ax=B

\begin{bmatrix} -4 && 2 && 0 \\ 2 && 0 && -3 \\ 0 && 3 && 1\end{bmatrix}.\begin{bmatrix} a \\b\\c \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 10 \end{bmatrix}

se crea la matriz aumentada:

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 2 && 0 && -3 &&-6 \\ 0 && 3 && 1 && 10 \end{bmatrix}

se pivotea por filas buscando hacerla diagonal dominante:

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 2 && 0 && -3 &&-6 \end{bmatrix}

se aplica el algoritmo de eliminación hacia adelante:
1ra Iteración

la eliminación del primer término columna es necesario solo para la tercera fila:

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 2 -(-4)\Big( \frac{2}{-4}\Big) && 0-2\Big(\frac{2}{-4}\Big) && -3 -0\Big(\frac{2}{-4}\Big) &&-6 -3\Big(\frac{2}{-4}\Big) \end{bmatrix} \begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 0 && 1 && -3 && -4.5 \end{bmatrix}

2da Iteración

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 0 && 1 -3\Big(\frac{1}{3}\Big) && -3-(1)\Big(\frac{1}{3}\Big) && -4.5-10\Big(\frac{1}{3}\Big) \end{bmatrix} \begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 0 && 0 && -\frac{10}{3} && -7.8333 \end{bmatrix}

Aplicando eliminación hacia atras

(-10/3)c = -7.8333
c = -7.8333(-3/10) = 2.35

3b +c = 10
b= (10-c)/3 = (10-2.35)/3 = 2.55

-4a +2b =3
a= (3-2b)/(-4) = (3-2(2.55))/(-4) = 0.525

como resultado, los vectores buscados:

v1 = (2,-3,0.525)
v2 = (2.55,1,-4)
v3 = (3,2.35,2)

comprobando resultados:

>>> np.dot((2,-3,0.525),(2.55,1,-4))
-4.440892098500626e-16
>>> np.dot((2,-3,0.525),(3,2.35,2))
-6.661338147750939e-16
>>> np.dot((2.55,1,-4),(3,2.35,2))
2.0

Los dos primeros resultados son muy cercanos a cero, por lo que se los considera válidos

literal c

Para usar el método de Jacobi, se despeja una de las variables de cada ecuación:

\begin{cases} a = \frac{2b -3}{4} \\b = \frac{10-c}{3} \\c = \frac{2a+6}{3} \end{cases}

usando el vector x(0) = [0,0,0]

1ra iteración

a = \frac{2b -3}{4} = \frac{2(0) -3}{4} = -\frac{3}{4} b = \frac{10-c}{3} = \frac{10-0}{3} = \frac{10}{3} c = \frac{2a+6}{3 }= \frac{2(0)+6}{3} = 2

x(1) = [-3/4,10/3,2]
diferencias = [-3/4-0,10/3-0,2-0] = [-3/4,10/3,2]
error = max|diferencias| = 10/3 = 3.3333

2da iteración

a = \frac{2b -3}{4} = \frac{2(10/3) -3}{4} = \frac{11}{12} b = \frac{10-c}{3} = \frac{10-2}{3} = \frac{8}{3} c = \frac{2a+6}{3} = \frac{2(-3/4)+6}{3} = \frac{3}{2}

x(2) = [11/12,8/3,3/2]
diferencias = [11/12-(-3/4),8/3-10/3,3/2-2] = [20/12, -2/3, -1/2]
error = max|diferencias| = 5/3= 1.666

3ra iteración

a = \frac{2b -3}{4} = \frac{2(8/3)-3}{4} = \frac{7}{12} b = \frac{10-c}{3} = \frac{10-3/2}{3} = \frac{17}{6} c = \frac{2a+6}{3} = \frac{2(11/12)+6}{3} = 2.6111

x(3) = [7/12, 17/6, 2.6111]
diferencias = [7/12-11/12, 17/6-8/3, 2.6111-3/2] = [-1/3, 1/6, 1.1111]
error = max|diferencias| = 1.1111

Los errores disminuyen en cada iteración, por lo que el método converge,
si se analiza en número de condición de la matriz A es 2, lo que es muy cercano a 1, por lo tanto el método converge.


Revisión de resultados

Resultados usando algoritmos desarrollados en clase:

matriz aumentada: 
[[-4.   2.   0.   3. ]
 [ 0.   3.   1.  10. ]
 [ 2.   0.  -3.  -6. ]]
Elimina hacia adelante
[[-4.   2.   0.   3. ]
 [ 0.   3.   1.  10. ]
 [ 0.   1.  -3.  -4.5]]
Elimina hacia adelante
[[-4.   2.   0.        3.      ]
 [ 0.   3.   1.       10.      ]
 [ 0.   0.  -3.333333 -7.833333]]
Elimina hacia adelante
[[-4.   2.   0.        3.      ]
 [ 0.   3.   1.       10.      ]
 [ 0.   0.  -3.333333 -7.833333]]
Elimina hacia atras
[[ 1.  -0.  -0.   0.525]
 [ 0.   1.   0.   2.55 ]
 [-0.  -0.   1.   2.35 ]]
el vector solución X es:
[[0.525]
 [2.55 ]
 [2.35 ]]
verificar que A.X = B
[[ 3.]
 [10.]
 [-6.]]

Número de condición de A: 2.005894

los resultados para [a,b,c]:
[0.525 2.55  2.35 ]

producto punto entre vectores:
v12:  0.0
v13:  1.3322676295501878e-15
v23:  2.0

Algoritmos en Python:

# 1Eva_IT2019_T3 Vector perpendicular a plano
import numpy as np

# INGRESO
A = np.array([[-4.,2,0],
              [ 0., 3,1],
              [ 2.,0,-3]])
B = np.array([3.,10,-6])

# PROCEDIMIENTO
B = np.transpose([B])

casicero = 1e-15 # 0
AB = np.concatenate((A,B),axis=1)
tamano = np.shape(AB)
n = tamano[0]
m = tamano[1]

print('matriz aumentada: ')
print(AB)
# Gauss elimina hacia adelante
# tarea: verificar términos cero
for i in range(0,n,1):
    pivote = AB[i,i]
    adelante = i+1 
    for k in range(adelante,n,1):
        if (np.abs(pivote)>=casicero):
            factor = AB[k,i]/pivote
            AB[k,:] = AB[k,:] - factor*AB[i,:]
    print('Elimina hacia adelante')
    print(AB)

# Gauss-Jordan elimina hacia atras
ultfila = n-1
ultcolumna = m-1
for i in range(ultfila,0-1,-1):
    # Normaliza a 1 elemento diagonal
    AB[i,:] = AB[i,:]/AB[i,i]
    pivote = AB[i,i] # uno
    # arriba de la fila i
    atras = i-1 
    for k in range(atras,0-1,-1):
        if (np.abs(AB[k,i])>=casicero):
            factor = pivote/AB[k,i]
            AB[k,:] = AB[k,:]*factor - AB[i,:]
        else:
            factor= 'division para cero'
print('Elimina hacia atras')
print(AB)

X = AB[:,ultcolumna]

# Verifica resultado
verifica = np.dot(A,X)

# SALIDA
print('el vector solución X es:')
print(np.transpose([X]))

print('verificar que A.X = B')
print(np.transpose([verifica]))

numcond = np.linalg.cond(A)

# para comprobar respuestas

v1 = [2,-3,X[0]]
v2 = [X[1],1,-4]
v3 = [3,X[2],2]

v12 = np.dot(v1,v2)
v13 = np.dot(v1,v3)
v23 = np.dot(v2,v3)
      
# SALIDA
print('\n Número de condición de A: ', numcond)

print('\n los resultados para [a,b,c]:')
print(X)

print('\n productos punto entre vectores:')
print('v12: ',v12)
print('v13: ',v13)
print('v23: ',v23)

Tarea, usar el algoritmo de Jacobi usado en el taller correspondiente.

s1Eva_IT2019_T2 Catenaria cable

Ejercicio: 1Eva_IT2019_T2 Catenaria cable

Las fórmulas con las que se requiere trabajar son:

y = \frac{T_A}{w} cosh \Big( \frac{w}{T_A}x \Big) + y_0 - \frac{T_A}{w}

Donde la altura y del cable está en función de la distancia x.

Además se tiene que:

cosh(z) = \frac{e^z+ e^{-z}}{2}

que sustituyendo la segunda en la primera se convierte en:

y = \frac{T_A}{w} \frac{e^{\frac{w}{T_A}x}+ e^{-\frac{w}{T_A}x}}{2} + y_0 - \frac{T_A}{w}

y usando los valores del enunciado w=12, y0=6 , y=15, x=50 se convierte en:

15 = \frac{T_A}{12} \frac{e^{\frac{12}{T_A}50}+ e^{-\frac{12}{T_A}50}}{2} + 6 - \frac{T_A}{12}

simplificando, para usar el método de búsqueda de raices:

\frac{1}{2}\frac{T_A}{12} e^{\frac{12}{T_A}50} + \frac{1}{2}\frac{T_A}{12} e^{-\frac{12}{T_A}50} - \frac{T_A}{12} - 9 = 0

cambiando la variable \frac{12}{T_A}=x

\frac{1}{2x} e^{50x} + \frac{1}{2x} e^{-50x} - \frac{1}{x}-9=0

la función a usar para la búsqueda de raices es:

f(x)=\frac{1}{2x} e^{50x} + \frac{1}{2x} e^{-50x} - \frac{1}{x}-9

Para el método de Newton-Raphson se tiene que:

x_{i+1} = x_i -\frac{f(x_i)}{f'(x_i)}

por lo que se determina:

f'(x)= - \frac{1}{2x^2}e^{50x} + \frac{1}{2x}(50) e^{50x} + - \frac{1}{2x^2} e^{-50x} + \frac{1}{2x}(-50)e^{-50x} + \frac{1}{x^2} f'(x)= -\frac{1}{2x^2}[e^{50x}+e^{-50x}] + + \frac{25}{x}[e^{50x}-e^{-50x}] +\frac{1}{x^2} f'(x)= \Big[\frac{25}{x} -\frac{1}{2x^2}\Big]\Big[e^{50x}+e^{-50x}\Big] +\frac{1}{x^2}

Con lo que se puede inicar las iteraciones.

Por no disponer de valor inicial para TA, considere que el cable colgado no debería tener tensión TA=0 N, pues en la forma x=12/TA se crea una indeterminación. Si no dispone de algún criterio para seleccionar el valor de TA puede iniciar un valor positivo, por ejemplo 120 con lo que el valor de x0=12/120=0.1

Iteración 1

f(0.1)=\frac{1}{2(0.1)} e^{50(0.1)} + \frac{1}{2(0.1)} e^{-50(0.1)} - \frac{1}{0.1}-9 =723.0994 f'(0.1)=\Big[\frac{25}{0.1} - \frac{1}{2(0.1)^2}\Big]\Big[e^{50(0.1)}+e^{-50(0.1)}\Big] + +\frac{1}{(0.1)^2} = 29780.61043 x_{1} = 0.1 -\frac{723.0994}{29780.61043} = 0.07571

error = | x1 – x0| = | 0.07571 – 0.1| = 0.02428

Iteración 2

f(0.07571)=\frac{1}{2(0.07571)} e^{50(0.07571)}+ + \frac{1}{2(0.07571)} e^{-50(0.07571)} - \frac{1}{0.07571}-9 = 269.0042 f'(0.07571)= \Big[\frac{25}{0.07571} -\frac{1}{2(0.07571)^2}\Big]. .\Big[e^{50(0.07571)}+e^{-50(0.07571)}\Big] + +\frac{1}{(0.07571)^2} = 10874.0462 x_{2} = 0.07571 -\frac{269.0042}{10874.0462} = 0.05098

error = | x2 – x1| = |0.05098- 0.02428| = 0.02473

Iteración 3

f(0.05098) = 97.6345 f'(0.05098) = 4144.1544 x_{3} = 0.0274

error = | x3 – x2| = |0.05098- 0.0274| = 0.0236

finalmente después de varias iteraciones, la raiz se encuentra en: 0.007124346154337298

que convitiendo

T_A = \frac{12}{x} = \frac{12}{0.0071243461} = 1684.36 N

Revisión de resultados

Usando como base los algoritmos desarrollados en clase:

['xi', 'xnuevo', 'tramo']
[0.1    0.0757 0.0243]
[0.0757 0.051  0.0247]
[0.051  0.0274 0.0236]
[0.0274 0.0111 0.0163]
[0.0111 0.0072 0.0039]
[7.2176e-03 7.1244e-03 9.3199e-05]
[7.1244e-03 7.1243e-03 3.8351e-08]
raiz en:  0.007124346154337298
TA = 12/x =  1684.365096815854

Algoritmos Python usando el procedimiento de:

http://blog.espol.edu.ec/analisisnumerico/2-3-1-newton-raphson-ejemplo01/

# 1Eva_IT2019_T2 Catenaria cable
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
a = 0.001
b = 0.1
muestras = 51

x0 = 0.1
tolera = 0.00001

fx = lambda x: 0.5*(1/x)*np.exp(50*x) + 0.5*(1/x)*np.exp(-50*x)-1/x -9
dfx = lambda x: -0.5*(1/(x**2))*(np.exp(50*x)+np.exp(-50*x)) + (25/x)*(np.exp(50*x)-np.exp(-50*x)) + 1/(x**2)

# PROCEDIMIENTO
tabla = []
tramo = abs(2*tolera)
xi = x0
while (tramo>=tolera):
    xnuevo = xi - fx(xi)/dfx(xi)
    tramo = abs(xnuevo-xi)
    tabla.append([xi,xnuevo,tramo])
    xi = xnuevo

tabla = np.array(tabla)
n=len(tabla)

TA = 12/xnuevo

# para la gráfica
xp = np.linspace(a,b,muestras)
fp = fx(xp)

# SALIDA
print(['xi', 'xnuevo', 'tramo'])
np.set_printoptions(precision = 4)
for i in range(0,n,1):
    print(tabla[i])
print('raiz en: ', xi)
print('TA = 12/x = ', TA)

# Grafica
plt.plot(xp,fp)
plt.xlabel('x=12/TA')
plt.ylabel('f(x)')
plt.axhline(0, color = 'green')
plt.grid()
plt.show()

s1Eva_IT2019_T1 Oxígeno y temperatura en agua

Ejercicio: 1Eva_IT2019_T1 Oxígeno y temperatura en agua

Literal a

Se requiere un polinomio de grado 3 siendo el eje x correspondiente a temperatura. Son necesarios 4 puntos de referencia alrededor de 15 grados, dos a la izquierda y dos a la derecha.

Se observa que los datos en el eje x son equidistantes, h=8, y ordenados en forma ascendente, se cumple con los requisitos para usar diferencias finitas avanzadas. que tiene la forma de:

p_n (x) = f_0 + \frac{\Delta f_0}{h} (x - x_0) + + \frac{\Delta^2 f_0}{2!h^2} (x - x_0)(x - x_1) + + \frac{\Delta^3 f_0}{3!h^3} (x - x_0)(x - x_1)(x - x_2) + \text{...}

Tabla

xi f[xi] f[x1,x0] f[x2,x1,x0] f[x2,x1,x0] f[x3,x2,x1,x0]
8 11.5 9.9-11.5=
-1.6
-1.5-(-1.6) =
0.1
0.4-0.1=
0.3
16 9.9 8.4-9.9=
-1.5
-1.1-(1.5)=
0.4
24 8.4 7.3-8.4=
-1.1
32 7.3

Con lo que el polinomio buscado es:

p_3 (x) = 11.5 + \frac{-1.6}{8} (x - 8) + + \frac{0.1}{2!8^2} (x - 8)(x - 16) + \frac{0.3}{3!8^3} (x - 8)(x - 16)(x - 24)

Resolviendo y simplificando el polinomio, se puede observar que al aumentar el grado, la constante del término disminuye.

p_3(x)=12.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3

para el cálculo del error se puede usar un término adicional del polinomio, añadiendo un punto más a la tabla de diferencia finitas. Se evalúa éste término y se estima el error que dado que el término de grado 3 es del orden de 10-5, el error será menor. (Tarea)

p_3(15)=12.9- 0.15 (15) - 0.00390625 (15)^2 + 0.00009765625 (15)^3

Evaluando el polinomio en temperatura = 15:

p3(15) = 10.1006835937500

literal b

se deriva el polinomio del literal anterior y se evalúa en 16:

p'_3(x)=0- 0.15 - 0.00390625 (2) x + 0.00009765625 (3)x^2 p'_3(16)=0- 0.15 - 0.00390625 (2)(16) + 0.00009765625 (3)(16)^2

p’3(16) = -0.20

literal c

El valor de oxígeno usado como referencia es 9, cuyos valores de temperatura se encuentran entre 16 y 24 que se toman como rango inicial de búsqueda [a,b]. Por lo que el polinomio se iguala a 9 y se crea la forma estandarizada del problema:

p_3(x)=9 9 = 12.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3 12.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3 -9 = 0 f(x) = 3.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3

Para mostrar el procedimiento se realizan solo tres iteraciones,

1ra Iteración
a=16 , b = 24, c = (16+24)/2 = 20
f(a) = 0.9, f(b) = -0.6, f(c) = 0.011
error = |24-16| = 8
como f(c) es positivo, se mueve el extremo f(x) del mismo signo, es decir a

2da Iteración
a=20 , b = 24, c = (20+24)/2 = 22
f(a) = 0.119, f(b) = -0.6, f(c) = -0.251
error = |24-20|= 4
como f(c) es negativo, se mueve el extremo f(x) del mismo signo, b

3ra Iteración
a=20 , b = 22, c = (20+22)/2 = 21
f(a) = 0.119, f(b) = -0.251, f(c) = -0.068
error = |22-20| = 2
como f(c) es negativo, se mueve el extremo f(x) del mismo signo, b
y así sucesivamente hasta que error< que 10-3

Usando el algoritmo en python se obtendrá la raiz en 20.632 con la tolerancia requerida.


Revisión de resultados

Usando como base los algoritmos desarrollados en clase:

tabla de diferencias finitas
['i', 'xi', 'fi', 'df1', 'df2', 'df3', 'df4']
[[ 0.   8.  11.5 -1.6  0.1  0.3  0. ]
 [ 1.  16.   9.9 -1.5  0.4  0.   0. ]
 [ 2.  24.   8.4 -1.1  0.   0.   0. ]
 [ 3.  32.   7.3  0.   0.   0.   0. ]]
dfinita:  [-1.6  0.1  0.3  0. ]
11.5 +
+( -1.6 / 8.0 )* ( x - 8.0 )
+( 0.1 / 128.0 )*  (x - 16.0)*(x - 8.0) 
+( 0.3 / 3072.0 )*  (x - 24.0)*(x - 16.0)*(x - 8.0) 
polinomio simplificado
9.8e-5*x**3 - 0.003923*x**2 - 0.149752*x + 12.898912
Literal a
9.8e-5*x**3 - 0.003923*x**2 - 0.149752*x + 12.898912
p(15) =  10.1007070000000

Literal b
0.000294*x**2 - 0.007846*x - 0.149752
dp(16) = -0.200024000000000
método de Bisección
i ['a', 'c', 'b'] ['f(a)', 'f(c)', 'f(b)']
   tramo
0 [16, 20.0, 24] [ 0.9     0.1187 -0.6   ]
   4.0
1 [20.0, 22.0, 24] [ 0.1187 -0.2509 -0.6   ]
   2.0
2 [20.0, 21.0, 22.0] [ 0.1187 -0.0683 -0.2509]
   1.0
3 [20.0, 20.5, 21.0] [ 0.1187  0.0246 -0.0683]
   0.5
4 [20.5, 20.75, 21.0] [ 0.0246 -0.022  -0.0683]
   0.25
5 [20.5, 20.625, 20.75] [ 0.0246  0.0013 -0.022 ]
   0.125
6 [20.625, 20.6875, 20.75] [ 0.0013 -0.0104 -0.022 ]
   0.0625
7 [20.625, 20.65625, 20.6875] [ 0.0013 -0.0045 -0.0104]
   0.03125
8 [20.625, 20.640625, 20.65625] [ 0.0013 -0.0016 -0.0045]
   0.015625
9 [20.625, 20.6328125, 20.640625] [ 0.0013 -0.0002 -0.0016]
   0.0078125
10 [20.625, 20.62890625, 20.6328125] [ 0.0013  0.0006 -0.0002]
   0.00390625
11 [20.62890625, 20.630859375, 20.6328125] [ 0.0006  0.0002 -0.0002]
   0.001953125
12 [20.630859375, 20.6318359375, 20.6328125] [ 1.9762e-04  1.5502e-05 -1.6661e-04]
   0.0009765625
raíz en:  20.6318359375

Algoritmos Python usando la función de interpolación y un procedimiento encontrado en:

Interpolación por Diferencias finitas avanzadas

Método de la Bisección – Ejemplo con Python

# 1Eva_IT2019_T1 Oxígeno y temperatura en mar
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym

def interpola_dfinitasAvz(xi,fi, vertabla=False,
                       precision=6, casicero = 1e-15):
    '''Interpolación de diferencias finitas
    resultado: polinomio en forma simbólica,
    redondear a cero si es menor que casicero 
    '''
    xi = np.array(xi,dtype=float)
    fi = np.array(fi,dtype=float)
    n = len(xi)
    # revisa tamaños de paso equidistantes
    h_iguales = pasosEquidistantes(xi, casicero)
    if vertabla==True:
        np.set_printoptions(precision)
    # POLINOMIO con diferencias Finitas avanzadas
    x = sym.Symbol('x')
    polisimple = sym.S.Zero # expresión del polinomio con Sympy
    if h_iguales==True:
        tabla,titulo = dif_finitas(xi,fi,vertabla)
        h = xi[1] - xi[0]
        dfinita = tabla[0,3:]
        if vertabla==True:
            print('dfinita: ',dfinita)
            print(fi[0],'+')
        n = len(dfinita)
        polinomio = fi[0]
        for j in range(1,n,1):
            denominador = np.math.factorial(j)*(h**j)
            factor = np.around(dfinita[j-1]/denominador,precision)
            termino = 1
            for k in range(0,j,1):
                termino = termino*(x-xi[k])
            if vertabla==True:
                txt1='';txt2=''
                if n<=2 or j<=1:
                    txt1 = '('; txt2 = ')'
                print('+(',np.around(dfinita[j-1],precision),
                      '/',np.around(denominador,precision),
                      ')*',txt1,termino,txt2)
            polinomio = polinomio + termino*factor
        # simplifica multiplicando entre (x-xi)
        polisimple = polinomio.expand() 
    if vertabla==True:
        print('polinomio simplificado')
        print(polisimple)
    return(polisimple)

def dif_finitas(xi,fi, vertabla=False):
    '''Genera la tabla de diferencias finitas
    resultado en: [título,tabla]
    Tarea: verificar tamaño de vectores
    '''
    xi = np.array(xi,dtype=float)
    fi = np.array(fi,dtype=float)
    # Tabla de Diferencias Finitas
    titulo = ['i','xi','fi']
    n = len(xi)
    ki = np.arange(0,n,1)
    tabla = np.concatenate(([ki],[xi],[fi]),axis=0)
    tabla = np.transpose(tabla)
    # diferencias finitas vacia
    dfinita = np.zeros(shape=(n,n),dtype=float)
    tabla = np.concatenate((tabla,dfinita), axis=1)
    # Calcula tabla, inicia en columna 3
    [n,m] = np.shape(tabla)
    diagonal = n-1
    j = 3
    while (j < m):
        # Añade título para cada columna
        titulo.append('df'+str(j-2))
        # cada fila de columna
        i = 0
        while (i < diagonal):
            tabla[i,j] = tabla[i+1,j-1]-tabla[i,j-1]
            i = i+1
        diagonal = diagonal - 1
        j = j+1
    if vertabla==True:
        print('tabla de diferencias finitas')
        print(titulo)
        print(tabla)
    return(tabla, titulo)

def pasosEquidistantes(xi, casicero = 1e-15):
    ''' Revisa tamaños de paso h en vector xi.
    True:  h son equidistantes,
    False: h tiene tamaño de paso diferentes y dónde.
    '''
    xi = np.array(xi,dtype=float)
    n = len(xi)
    # revisa tamaños de paso equidistantes
    h_iguales = True
    if n>3: 
        dx = np.zeros(n,dtype=float)
        for i in range(0,n-1,1): # calcula hi como dx
            dx[i] = xi[i+1]-xi[i]
        for i in range(0,n-2,1): # revisa diferencias
            dx[i] = dx[i+1]-dx[i]
            if dx[i]<=casicero: # redondea cero
                dx[i]=0
            if abs(dx[i])>0:
                h_iguales=False
                print('tamaños de paso diferentes en i:',i+1,',',i+2)
        dx[n-2]=0
    return(h_iguales)

# PROGRAMA ----------------

# INGRESO
tm = [0.,8,16,24,32,40]
ox = [14.6,11.5,9.9,8.4,7.3,6.4]

xi = [8,16,24,32]
fi = [11.5,9.9,8.4,7.3]

# PROCEDIMIENTO
x = sym.Symbol('x')
# literal a
polinomio = interpola_dfinitasAvz(xi,fi, vertabla=True)
p15 = polinomio.subs(x,15)
# literal b
derivap = polinomio.diff(x,1)
dp16 = derivap.subs(x,16)

px =  sym.lambdify(x,polinomio)
xk = np.linspace(np.min(xi),np.max(xi))
pk = px(xk)

# SALIDA
print('Literal a')
print(polinomio)
print('p(15) = ',p15)
print('Literal b')
print(derivap)
print('dp(16) =', dp16)

# gráfica
plt.plot(tm,ox,'ro')
plt.plot(xk,pk)
plt.axhline(9,color="green")
plt.xlabel('temperatura')
plt.ylabel('concentracion de oxigeno')
plt.grid()
plt.show()

# --------literal c ------------

def biseccion(fx,a,b,tolera,iteramax = 20, vertabla=False, precision=4):
    '''
    Algoritmo de Bisección
    Los valores de [a,b] son seleccionados
    desde la gráfica de la función
    error = tolera
    '''
    fa = fx(a)
    fb = fx(b)
    tramo = np.abs(b-a)
    itera = 0
    cambia = np.sign(fa)*np.sign(fb)
    if cambia<0: # existe cambio de signo f(a) vs f(b)
        if vertabla==True:
            print('método de Bisección')
            print('i', ['a','c','b'],[ 'f(a)', 'f(c)','f(b)'])
            print('  ','tramo')
            np.set_printoptions(precision)
            
        while (tramo>=tolera and itera<=iteramax):
            c = (a+b)/2
            fc = fx(c)
            cambia = np.sign(fa)*np.sign(fc)
            if vertabla==True:
                print(itera,[a,c,b],np.array([fa,fc,fb]))
            if (cambia<0):
                b = c
                fb = fc
            else:
                a = c
                fa = fc
            tramo = np.abs(b-a)
            if vertabla==True:
                print('  ',tramo)
            itera = itera + 1
        respuesta = c
        # Valida respuesta
        if (itera>=iteramax):
            respuesta = np.nan

    else: 
        print(' No existe cambio de signo entre f(a) y f(b)')
        print(' f(a) =',fa,',  f(b) =',fb) 
        respuesta=np.nan
    return(respuesta)
# se convierte forma de símbolos a numéricos
buscar = polinomio-9
fx = sym.lambdify(x,buscar)

# INGRESO
a = 16
b = 24
tolera = 0.001

# PROCEDIMIENTO
respuesta = biseccion(fx,a,b,tolera,vertabla=True)

# SALIDA
print('raíz en: ', respuesta)

s1Eva_IIT2018_T4 Tasa de interés en hipoteca

Ejercicio: 1Eva_IIT2018_T4 Tasa de interés en hipoteca

literal a

Siguiendo el desarrollo analítico tradicional, para adecuar la ecuación para los algoritmo de búsquda de raíces de ecuaciones,  se reemplazan los valores en la fórmula.

P = A\Big(\frac{1-(1+i)^{-n}}{i} \Big) 70000 = 1200\Big(\frac{1-(1+i)^{-300}}{i} \Big)

Como ambos lados de la ecuación deben ser iguales, si se restan ambos se obtiene una ecuación que tiene como resultado cero, que es la forma ideal para usar en el algoritmo que representa f(x) o en este caso f(i)

70000 - 1200\Big(\frac{1-(1+i)^{-300}}{i} \Big) = 0

Para evitar inconvenientes con la división para cero en caso que i tome el valor de cero, dado se multiplica toda la ecuación por i:

i \Big[70000 - 1200\Big(\frac{1-(1+i)^{-300}}{i} \Big) \Big]= i (0) 70000 i - 1200 (1-(1+i)^{-300}) = 0

La ecuación es la utilizada en el algoritmo de búsqueda de raíces pueden ser:

fx(i) = 70000 - 1200\Big(\frac{1-(1+i)^{-300}}{i} \Big) fx(i) = 70000i - 1200(1-(1+i)^{-300})

literal b

El intervalo de existencia correspondería a la tasa de interés mínimo y el interés máximo.

[izquierda, derecha] = [a,b]

Para el intervalo se deben tomar en cuenta algunas consideraciones descritas a continuación:

izquierda:

En el extremo izquierdo, las tasas no son negativas, lo que se interpreta en que un banco paga por que le presten dinero.

Tampoco tiene mucho sentido el valor cero, que son prestamos sin intereses. A menos que sean sus padres quienes le dan el dinero.

Un valor inicial para el interés puede ser por ejemplo 1% ó 0.01, siempre que se cumpla que existe cambio de signo en la función a usar.

derecha:

En el extremo derecho, si se propone por ejemplo i con 100%, o 1.00, no tendría mucho sentido un préstamo con intereses al 100% anual, que resulta en el doble del valor inicial en tan solo un periodo o año.

La tasa de interés de consumo que son de las más alto valor, se encuentran reguladas. En Ecuador es un valor alrededor del 16% anuales o 0.16.

Considerando las observaciones iniciales del problema, se propone empezar el análisis para la búsqueda de la raíz en el intervalo en un rango más amplio:

[ 0.01, 0.50]

Ser realiza la comprobación que existe cambio de signo en los extremos del intervalo.

fx(0.001) =- 43935.86

fx(0.50) = 67600.0

Para el ejercicio se hace notar que la es tasa nominal anual, pero los pagos son mensuales. Por lo que se debe unificar las tasas de interes a mensuales. Una aproximación es usar las tasas anuales divididas para los 12 meses del año.

Tolerancia al error

La tolerancia se considera en éste ejercicio como el valor de diferencias  (tramo) entre iteraciones con precisión satisfactoria.

Por ejemplo si no negociaremos más con el banco por variaciones de tasas del 0.1% , entonces la tolerancia será de 0.001.

Las publicaciones de tasas en el mercado incluyen dos decimales, por lo que para el ejercicio aumentamos la precisión a : 0.0001

tolera = 1×10-4


Literal c


Se presentan dos formas se solución para el litera c:

– c.1 la requerida en el enunciado con Newton-Raphson

– c.2 una alterna con el método de la Bisección.


c.1. Desarrollo del ejercicio con el método del enunciado Newton-Raphson


Para el método de Newton-Raphson se tiene que:

x_{i+1} = x_{i} - \frac{f(x_0i)}{f'(x_i)}

Se requiere la derivada de la función planteada en el literal a:

fx(i) = 70000i - 1200(1-(1+i)^{-300}) f'x(i) = 70000 + 1200(300)(1+i)^{-301})

tomando como valor inicial xi = 0.16/12 ≈ 0.013

Se realizan las iteraciones suponiendo que tolera = 1×10-4

iteración 1

fx(0.013) = 70000(0.013) - 1200(1-(1+0.013)^{-300})

 = -265.09

f'x(0.013) = 70000 + 1200(300)(1+0.013)^{-301})

= 62623.3

x_{2} = 0.013 - \frac{-265.09}{62623.34} = 0.017233

error = |0.013 – 0.01723| = 0.004331

iteración 2

fx(0.01723) = 70000i - 1200(1-(1+0.0.01723)^{-300})

= 13.446

f'x(0.01723) = 70000 + 1200(300)(1+0.01723)^{-301}

= 67897.5

x_{3} = 0.017233 - \frac{13.446}{67897.5} = 0.017031

error = |0.017233 – 0.017031| = 0.000198

cuyo valor de error está casi dentro del valor de tolerancia,

que permite tomar el último valor como respuesta de tasa mensual

raiz = tasa mensual = 0.01703

Convirtiendo a la tasa tasa anual que es la publicada por las instituciones financieras se tiene que:

tasa anual nominal =  0.01703*12 = 0.2043

Teniendo como resultado una tasa anual de 20.43%

E2_IIT2018_T4 Tasa Interes Hipoteca 01


Algoritmo en Python

El resultado con el algoritmo es:

método de Newton-Raphson
i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 1.30000e-02 -2.65091e+02  6.26233e+04  1.72331e-02  4.23311e-03]
1 [1.72331e-02 1.34468e+01 6.78975e+04 1.70351e-02 1.98045e-04]
2 [1.70351e-02 1.24433e-02 6.77706e+04 1.70349e-02 1.83609e-07]
raiz encontrada en:  0.017034880749732726
tasa anual:  0.20441856899679273

Instrucciones en Python

# 1ra Evaluación II Término 2018
# Tema 4. Tasa de interes para hipoteca
import numpy as np

def newton_raphson(fx,dfx,xi, tolera, iteramax=100,
                   vertabla=False, precision=4):
    '''fx y dfx en forma numérica lambda
    xi es el punto inicial de búsqueda
    '''
    itera=0
    tramo = abs(2*tolera)
    if vertabla==True:
        print('método de Newton-Raphson')
        print('i', ['xi','fi','dfi', 'xnuevo', 'tramo'])
        np.set_printoptions(precision)
    while (tramo>=tolera):
        fi = fx(xi)
        dfi = dfx(xi)
        xnuevo = xi - fi/dfi
        tramo = abs(xnuevo-xi)
        if vertabla==True:
            print(itera,np.array([xi,fi,dfi,xnuevo,tramo]))
        xi = xnuevo
        itera = itera + 1

    if itera>=iteramax:
        xi = np.nan
        print('itera: ',itera,
              'No converge,se alcanzó el máximo de iteraciones')

    return(xi)

# INGRESO
P = 70000.00
A = 1200.00
n = 25*12
fx  = lambda i: P*i - A*(1-(1+i)**(-n))
dfx = lambda i: P + A*(-n)*(i+1)**(-n-1)

x0 = 0.013 # 0.16/12
tolera = 0.0001

# PROCEDIMIENTO
raiz   = newton_raphson(fx, dfx, x0, tolera, vertabla=True, precision=5)
tanual = 12*raiz

# SALIDA
print('raiz encontrada en: ', raiz)
print('tasa anual: ',tanual)

# GRAFICA
import matplotlib.pyplot as plt
a = 0.01/12
b = 0.25/12
muestras = 21

tasa = np.linspace(a,b,muestras)
fi   = fx(tasa)

plt.plot(tasa*12,fi, label="tasa anual")
plt.axhline(0, color='green')
plt.title('tasa anual de interes para Hipoteca')
plt.xlabel('tasa')
plt.ylabel('fx(tasa)')
plt.grid()
plt.legend()
plt.show()

c.2. Desarrollo con el método de la Bisección


Desarrollo Analítico con Bisección

Como parte del desarrollo del ejercicio se presenta las iteraciones para el algoritmo, tradicionalmente realizadas con una calculadora.

fx(i) = 70000 - 1200\Big(\frac{1-(1+i)^{-300}}{i} \Big)

iteración 1

a = 0.01, b = 0.5 c = \frac{a+b}{2} = \frac{0.01+0.5}{2} = 0.255 fx(0.01) = 70000 - 1200\Big(\frac{1-(1+(0.01))^{-300}}{0.01} \Big) = -43935.86 fx(0.255) = 70000 - 1200\Big(\frac{1-(1+(0.255))^{-300}}{0.255} \Big) = 65294.11 fx(0.5) = 70000 - 1200\Big(\frac{1-(1+(0.5))^{-300}}{0.5} \Big) = 67600.0 tramo = 0.5-0.01 =0.49

cambio de signo a la izquierda

a = 0.01, b=0.255

iteración 2

c = \frac{a+b}{2} = \frac{0.01+0.225}{2} = 0.1325 fx(0.1325) = 70000 - 1200\Big(\frac{1-(1+(0.1325))^{-300}}{0.1325} \Big) = 60943.39 tramo = 0.225-0.01 =0.215

cambio de signo a la izquierda

a = 0.01, b=0.1325

iteración 3

c = \frac{a+b}{2} = \frac{0.01+0.1325}{2} = 0.07125 fx(0.07125) = 70000 - 1200\Big(\frac{1-(1+(0.07125))^{-300}}{0.07125} \Big) = 53157.89 tramo = 0.1325-0.01 =0.1225

cambio de signo a la izquierda

a = 0.01, b=0.07125

y se continuaría con las iteraciones, hasta cumplir que tramo<=tolera

Tabla de datos obtenidos

tabla para Bisección
i a c b f(a) f(c) f(b) tramo
1 0.01 0.255 0.5 -43935.86 65294.11 67600.0 0.49
2 0.01 0.1325 0.255 -43935.86 60943.39 65294.11 0.215
3 0.01 0.07125 0.1325 -43935.86 53157.89 60943.39 0.1225

hasta lo calculado la raiz se encontraría en el intervalo [0.01,0.07125] con error estImado de 0.06125, aún por mejorar con más iteraciones.

Algoritmo en Python para Bisección

  • El algoritmo bisección usa las variables a y b, por lo que los limites en el intervalo usados son [La,Lb]
  • para el problema la variable ‘i’ se usa en el eje x.
  • La selección de cambio de rango [a,b] se hace usando solo el signo del valor.
  • El algoritmo presentado es tal como se explica en la parte conceptual

Se deja como tarea convertir el algoritmo a funcion def-return de Python.

# 1Eva_IIT2018_T4 Tasa de interés en hipoteca
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
P = 70000.00
A = 1200.00
n = 25*12
fi = lambda i: P - A*(1-((1+i)**-n))/i

# Intervalo de observación
# e inicio de Bisección
La = 0.01
Lb = 0.50

tolera = 0.0001 #grafica

muestras = 21

# PROCEDIMIENTO

# Método de Bisección
a = La
b = Lb
c = (a+b)/2
tramo = np.abs(b-a)
while (tramo>tolera):
    fa = fi(a)
    fb = fi(b)
    fc = fi(c)
    cambio = np.sign(fc)*np.sign(fa)
    if (cambio>0):
        a = c
        b = b
    else:   
        b = c
        a = a
    c = (a+b)/2
    tramo = np.abs(b-a)

# Para la gráfica
tasa = np.linspace(La,Lb,muestras)
fr = fi(tasa)

# SALIDA
print('a, f(a):', a,fa)
print('c, f(c):', c,fc)
print('b, f(b):', b,fb)
print('la raiz esta entre: \n',a,b)
print('con un error de: ', tramo)
print('raiz es tasa buscada: ', c)
print('tasas anual buscada: ',c*12)

# Gráfica
plt.plot(tasa,fr)
plt.axhline(0, color='green')
plt.title('tasa de interes mensual')
plt.show()

la ejecución del algoritmo da como resultado

>>> 
 RESTART: D:/MATG1052Ejemplos/HipotecaInteres.py 
a, f(a): 0.016998291015625 -385.52828922150366
c, f(c): 0.0170281982421875 -145.85350695741363
b, f(b): 0.01705810546875 92.28034212642524
la raiz esta entre: 
 0.016998291015625 0.01705810546875
con un error de:  5.981445312500111e-05
raiz es tasa buscada:  0.0170281982421875
tasas anual buscada:  0.20433837890625

y la gráfica obtenida es:

s1Eva_IIT2018_T1 Interpolar velocidad del paracaidista

Ejercicio: 1Eva_IIT2018_T1 Interpolar velocidad del paracaidista

El ejercicio tiene dos partes: la interpolación y el integral.

Literal a

t [s] 0 2 4 6 8
v(t) [m/s] 0.0 16.40 27.77 35.64 41.10

https://www.dreamstime.com/stock-photo-skydiving-formation-group-people-image62015024No se especifica el método a seguir, por lo que se puede seleccionar el de mayor preferencia.

Por ejemplo. usando el método de Lagrange, con los puntos primero, medio y último, para cubrir todo el intervalo:

p_2(t) = 0\frac{(t-4)(t-8)}{(0-4)(0-8)} + + 27.77\frac{(t-0)(t-8)}{(4-0)(4-8)} + + 41.10\frac{(t-0)(t-4)}{(8-0)(8-4)} p_2(t) = 0 + 27.77\frac{t(t-8)}{-16}) + + 41.10\frac{t(t-4)}{32} p_2(t) = -1.73(t^2-8t) + 1.28(t^2-4t) p_2(t) = -0.45 t^2 + 8.74t

2_IIT2018_T1 Interpola Paracaidista 01


Literal b

El tema de integración para primera evaluación se realiza de forma analítica.

Una de las formas, que es independiente si se resolvió el literal a, es usar los datos proporcionados en la tabla el ejercicio:

t [s] 0 2 4 6 8
v(t) [m/s] 0.0 16.40 27.77 35.64 41.10

Se podría usar el método de Simpson de 1/3, puesto que los tamaños de paso en t son equidistantes se puede aplicar: h=2-0=2

\int_0^8 v(t)dt = \frac{2}{3}\Big( 0+ 4(16.40)+27.77\Big) + \frac{2}{3}\Big( 27.77+ 4(35.64)+41.10\Big) =203.2

con error del orden de O(h5) que al considerar h=2 no permite hacer una buena estimación del error. Sin embargo la respuesta es bastante cercana si se usa el método el trapecio con el algoritmo:

    valores de fi:  [ 0.   27.77 41.1 ]
divisores en L(i):  [ 32. -16.  32.]

Polinomio de Lagrange, expresiones
-1.735625*x*(x - 8.0) + 1.284375*x*(x - 4.0)

Polinomio de Lagrange: 
-0.45125*x**2 + 8.7475*x
Método del trapecio
distancia recorrida:  193.28
>>> 

El error entre los métodos es |203.2-193.28|= 9.92

Revisar el resultado usando un método con mayor precisión que el trapecio.


Algoritmo con Python

Las instrucciones en Python para el ejercicio son:

# 1ra Evaluación II Término 2018
# Tema 1. Interpolar velocidad del paracaidista
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt

# Literal a)
# Interpolacion de Lagrange
# divisoresL solo para mostrar valores

# INGRESO
t = [0.0, 2, 4, 6, 8]
v = [0.0, 16.40, 27.77, 35.64, 41.10]

cuales = [0,2,4]

# PROCEDIMIENTO
xi = np.array(t,dtype=float)
fi = np.array(v,dtype=float)

xi = xi[cuales]
fi = fi[cuales]

# Polinomio de Lagrange
n = len(xi)
x = sym.Symbol('x')
polinomio = 0
divisorL = np.zeros(n, dtype = float)
for i in range(0,n,1):
    
    # Termino de Lagrange
    numerador = 1
    denominador = 1
    for j  in range(0,n,1):
        if (j!=i):
            numerador = numerador*(x-xi[j])
            denominador = denominador*(xi[i]-xi[j])
    terminoLi = numerador/denominador

    polinomio = polinomio + terminoLi*fi[i]
    divisorL[i] = denominador

# simplifica el polinomio
polisimple = polinomio.expand()

# para evaluación numérica
px = sym.lambdify(x,polisimple)

# Puntos para la gráfica
muestras = 51
a = np.min(xi)
b = np.max(xi)
pxi = np.linspace(a,b,muestras)
pfi = px(pxi)

# SALIDA
print('    valores de fi: ',fi)
print('divisores en L(i): ',divisorL)
print()
print('Polinomio de Lagrange, expresiones')
print(polinomio)
print()
print('Polinomio de Lagrange: ')
print(polisimple)

# Gráfica
plt.plot(t,v,'o', label = 'Puntos')
plt.plot(xi,fi,'o', label = 'Puntos en polinomio')
plt.plot(pxi,pfi, label = 'Polinomio')
plt.legend()
plt.xlabel('xi')
plt.ylabel('fi')
plt.title('Interpolación Lagrange')
plt.grid()
plt.show()

# Literal b
# INGRESO
# El ingreso es el polinomio en forma lambda
# se mantienen las muestras

# intervalo de integración
# a, b seleccionados para la gráfica anterior
tramos = muestras -1

# PROCEDIMIENTO
def integratrapecio_fi(xi,fi):
    ''' sobre muestras de fi para cada xi
        integral con método de trapecio
    '''
    n = len(xi)
    suma = 0
    for i in range(0,n-1,1):
        dx = xi[i+1]-xi[i]
        untrapecio = dx*(fi[i+1]+fi[i])/2
        suma = suma + untrapecio
    return(suma)


tramos = muestras-1
# PROCEDIMIENTO
distancia = integratrapecio_fi(xi,fi)

# SALIDA
print('Método del trapecio')
print('distancia recorrida: ', distancia)

s1Eva_IIT2018_T3 Interpolar con sistema de ecuaciones

Ejercicio: 1Eva_IIT2018_T3 Interpolar con sistema de ecuaciones

Los datos del ejercicio proporcionados son:

i 0 1 2 3 4 5
x 1.0 1.1 1.3 1.5 1.9 2.1
y(x) 1.84 1.90 2.10 2.28 2.91 3.28

Literal a

El tema es semejante al tema 1, cambiando el método de interpolación.
Se usan los puntos de las posiciones 0, 3 y 5.

p_2(x) = b_0 + b_1x + b_2 x^2

en la fórmula:

punto x[0] = 1, y[0]= 1.84

1.84 = b_0 + b_1(1) + b_2 (1)^2 1.84 = b_0 + b_1 + b_2

punto x[3] = 1.5, y[3]= 2.28

2.28 = b_0 + b_1(1.5) + b_2 (1.5)^2 2.28 = b_0 + 1.5 b_1 + 2.25 b_2

punto x[5] = 2.1, y[5]= 3.28

3.28= b_0 + b_1(2.1) + b_2 (2.1)^2 3.28= b_0 + 2.1 b_1 + 4.41 b_2

se obtiene el sistema de ecuaciones:

b_0 + b_1 + b_2 = 1.84 b_0 + 1.5 b_1 + 2.25 b_2 = 2.28 b_0 + 2.1 b_1 + 4.41 b_2 = 3.28

Con lo que se plantea la forma Ax=B:

A = \begin{bmatrix} 1 & 1 & 1\\ 1 & 1.5 & 2.25 \\1 & 2.1 & 4.41 \end{bmatrix} B = \begin{bmatrix} 1.84\\ 2.28 \\ 3.28 \end{bmatrix}

Matriz Aumentada

AB = \begin{bmatrix} 1 & 1 & 1 & 1.84 \\ 1 & 1.5 & 2.25 & 2.28 \\1 & 2.1 & 4.41 &3.28 \end{bmatrix}

Pivoteo parcial por filas

Para el primer pivote no se requieren cambio de filas.
para el segundo pivote de la diagonal se deben intercambiar la fila segunda con la tercera

\begin{bmatrix} 1 & 1 & 1 & 1.84 \\ 1 & 2.1 & 4.41 &3.28 \\ 1 & 1.5 & 2.25 & 2.28 \end{bmatrix}

Se aplica eliminación hacia adelante:

fila = 0, columna=0  pivote = AB[0,0]=1

factor entre las filas es 1/1=1.

\begin{bmatrix}1 & 1 & 1 & 1.84 \\ 1-1 & 2.1-1 & 4.41 -1 &3.28 -1.84 \\ 1-1 & 1.5 -1 & 2.25 -1 & 2.28 - 1.84 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1.84 \\ 0 & 1.1 & 3.41 &1.44 \\ 0 & 0.5 & 1.25 & 0.44 \end{bmatrix}

fila =1,  columna=1, pivote=AB[1,1] =1.1

factor entre filas es 0.5/1.1 = 1/2.2

\begin{bmatrix} 1 & 1 & 1 & 1.84 \\ 0 & 1.1 & 3.41 &1.44 \\ 0 & 0.5 -\frac{0.5}{1.1}(1.1)& 1.25 -\frac{0.5}{1.1}(3.41)& 0.44-\frac{0.5}{1.1}(1.44) \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1.84 \\ 0 & 1.1 & 3.41 &1.44 \\ 0 & 0 & -0.3 & -0.214545 \end{bmatrix}

aplicando sustitución hacia atrás

b2 = -0.21/(-0.3) = 0.71515 b1= \frac{1.44-3.41 b_2}{1.1} = \frac{1.44-3.41( 0.71515)}{1.1}=-0.9078 b3= \frac{1.84-b_1-b_2}{1} = \frac{1.84-(-0.9078)-(0.71515)}{1} =2.0327

con lo que el polinomio buscado es:

p_2(x) = 2.0327 -0.9078 x + 0.71515 x^2

y se obtiene el resultado de la interpolación.

E2_IIT2018_T3 Interpola Sistema Ecuaciones 01Observación: En la gráfica se muestra que el polinomio pasa por los puntos seleccionados de la tabla. En los otros puntos hay un error que se puede calcular como la resta del punto y su valor con p(x). Queda como tarea.

Usando el algoritmo del polinomio de interpolación con la matriz de Vandermonde se obtiene:

Matriz Vandermonde: 
[[1.   1.   1.  ]
 [2.25 1.5  1.  ]
 [4.41 2.1  1.  ]]
los coeficientes del polinomio: 
[ 0.71515152 -0.90787879  2.03272727]
Polinomio de interpolación: 
0.715151515151516*x**2 - 0.907878787878792*x + 2.03272727272728

 formato pprint
                   2                                         
0.715151515151516*x  - 0.907878787878792*x + 2.03272727272728
suma de columnas:  [3.   4.75 7.51]
norma D:  7.51
numero de condicion:  97.03737354737122
solucion: 
[ 0.71515152 -0.90787879  2.03272727]
>>> 


Literal b

Se requiere calcular una norma de suma de filas. es suficiente para demostrar el conocimiento del concepto el usar A.

Se adjunta el cálculo del número de condición y la solución al sistema de ecuaciones:

suma de columnas:  [3.   4.75 7.51]
norma A:  7.51
numero de condición:  97.03737354737129
solución: 
[ 2.03272727 -0.90787879  0.71515152]

El comentario importante corresponde al número de condición, que es un número muy alto para usar un método iterativo, por lo que la solución debe ser un método directo.
Se puede estimar será un número mucho mayor que 1, pues la matriz no es diagonal dominante.


Instrucciones en Python

# 1Eva_IIT2018_T3 Interpolar con sistema de ecuaciones
# El polinomio de interpolación
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt

# INGRESO
xj = [1.0,  1.1,  1.3,  1.5,  1.9,  2.1 ]
yj = [1.84, 1.90, 2.10, 2.28, 2.91, 3.28]
cuales = [0, 3, 5]

# muestras = tramos+1
muestras = 51

# PROCEDIMIENTO
# Convierte a arreglos numpy 
xi = np.array(xj,dtype=float)
fi = np.array(yj,dtype=float)

xi = xi[cuales]
fi  = fi[cuales]
B = fi

n = len(xi)

# Matriz Vandermonde D
D = np.zeros(shape=(n,n),dtype =float)
for i in range(0,n,1):
    for j in range(0,n,1):
        potencia = (n-1)-j # Derecha a izquierda
        D[i,j] = xi[i]**potencia

# Aplicar métodos Unidad03. Tarea
# Resuelve sistema de ecuaciones A.X=B
coeficiente = np.linalg.solve(D,B)

# Polinomio en forma simbólica
x = sym.Symbol('x')
polinomio = 0
for i in range(0,n,1):
    potencia = (n-1)-i   # Derecha a izquierda
    termino = coeficiente[i]*(x**potencia)
    polinomio = polinomio + termino

# Polinomio a forma Lambda
# para evaluación con vectores de datos xin
px = sym.lambdify(x,polinomio)

# Para graficar el polinomio en [a,b]
a = np.min(xi)
b = np.max(xi)
xin = np.linspace(a,b,muestras)
yin = px(xin)

# Usando evaluación simbólica
##yin = np.zeros(muestras,dtype=float)
##for j in range(0,muestras,1):
##    yin[j] = polinomio.subs(x,xin[j])
    
# SALIDA
print('Matriz Vandermonde: ')
print(D)
print('los coeficientes del polinomio: ')
print(coeficiente)
print('Polinomio de interpolación: ')
print(polinomio)
print('\n formato pprint')
sym.pprint(polinomio)

# Grafica
plt.plot(xj,yj,'o', label='Puntos')
plt.plot(xi,B,'o', label='[xi,fi]')
plt.plot(xin,yin, label='p(x)')
plt.xlabel('xi')
plt.ylabel('fi')
plt.legend()
plt.title(polinomio)
plt.show()


# literal b
sumacolumnas = np.sum(D, axis =1)
norma = np.max(sumacolumnas)
print('suma de columnas: ', sumacolumnas)
print('norma D: ', norma)

numerocondicion = np.linalg.cond(D)
print('numero de condicion: ', numerocondicion)

solucion = np.linalg.solve(D,B)
print('solucion: ')
print(solucion)

.