s1Eva_IIT2019_T2 Proceso Termodinámico

Ejercicio: 1Eva_IIT2019_T2 Proceso Termodinámico

la ecuación para el problema se describe como:

f(x)=e^{-0.5x}

ecuación que se usa para describir los siguientes puntos:

x 0 1 2 3 4
f(x) 1 0.60653065 0.36787944 0.22313016  0.13533528

Como el polinomio es de grado 2, se utilizan tres puntos. Para cubrir el intervalo los puntos seleccionados incluyen los extremos y el punto medio.

literal a

Con los puntos seleccionados se escriben las ecuaciones del polinomio:

p_2(x)= a_0 x^2 + a_1 x + a_2

usando los valores de la tabla:

p_2(0)=a_0 (0)^2 + a_1 (0) + a_2 = 1 p_2(2)=a_0 (2)^2 + a_1 (2) + a_2 = 0.36787944 p_2(4)=a_0 (4)^2 + a_1 (4) + a_2 = 0.13533528

con la que se escribe la matriz Vandermonde con la forma A.x=B

A= [[ 0.,  0.,  1.,]
    [ 4.,  2.,  1.,]
    [16.,  4.,  1.,]]

B= [[1.        ],
    [0.36787944],
    [0.13533528]]) 

matriz aumentada

[[ 0.,  0.,  1.,  1.        ]
 [ 4.,  2.,  1.,  0.36787944]
 [16.,  4.,  1.,  0.13533528]]

matriz pivoteada

[[16.,  4.,  1.,  0.13533528]
 [ 4.,  2.,  1.,  0.36787944]
 [ 0.,  0.,  1.,  1.        ]]

Resolviendo por algún método directo, la solución proporciona los coeficientes del polinomio

Tarea: escribir la solución del método directo, semejante a la presentada en el tema 3

[[ 0.04994705]
 [-0.41595438]
 [ 1.        ]]

con lo que el polinomio de interpolación es:

p_2(x) = 0.04994705 x^2 - 0.41595438 x + 1.0

en el enunciado se requiere la evaluación en x=2.4

p_2(2.4) = 0.04994705 (2.4)^2 - 0.41595438 (2.4) + 1.0 f(2.4)=e^{-0.5(2.4)} error = |f(2.4)-p_2(2.4)|
Evaluando p(2.4):  0.2894044975129779
Error en 2.4:      0.011789714399224216
Error relativo:    0.039143230291095066

La diferencia entre la función y el polinomio de interpolación se puede observar en la gráfica:


literal b

Tarea: Encontrar la cota de error con f(1.7)


Algoritmo en Python

Presentado por secciones, semejante a lo desarrollado en clases

# Interpolación por polinomio
import numpy as np
import matplotlib.pyplot as plt

# INGRESO, Datos de prueba
fx = lambda x: np.exp(-0.5*x)

xi = np.array([0,2,4])

# determina vector
n = len(xi)
fi = np.zeros(n,dtype=float)
for i in range(0,n,1):
    fi[i]= fx(xi[i])

# PROCEDIMIENTO
# Arreglos numpy 
xi = np.array(xi)
fi = np.array(fi)
n = len(xi)

# Vector B en columna
B = np.array(fi)
B = fi[:,np.newaxis]

# Matriz Vandermonde D
D = np.zeros(shape=(n,n),dtype =float)
for f in range(0,n,1):
    for c in range(0,n,1):
        potencia = (n-1)-c
        D[f,c] = xi[f]**potencia

# Resolver matriz aumentada
coeficiente =  np.linalg.solve(D,B)

# Polinomio en forma simbólica
import sympy as sym
x = sym.Symbol('x')
polinomio = 0
for i in range(0,n,1):
    potencia = (n-1)-i
    termino = coeficiente[i,0]*((x**potencia))
    polinomio = polinomio + termino

# Convierte polinomio a funcion 
# para evaluación más rápida
px = sym.lambdify(x,polinomio)

# Para graficar el polinomio
k = 100
inicio = np.min(xi)
fin = np.max(xi)
puntosx = np.linspace(inicio,fin,k)
puntosy = px(puntosx)

puntosf = fx(puntosx)

# Puntos evaluados
x1 = 2.4
px1 = px(x1)
fx1 = fx(x1)
errorx1 = np.abs(px1-fx1)
errorx1rel = errorx1/fx1

x2 = 1.7
px2 = px(x1)
fx2 = fx(x1)
errorx2 = np.abs(px1-fx1)
errorx2rel = errorx1/fx1
    
# SALIDA
print('Matriz Vandermonde: ')
print(D)
print('los coeficientes del polinomio: ')
print(coeficiente)
print('Polinomio de interpolación: ')
print(polinomio)
print()
print('Evaluando en X1: ',x1)
print('Evaluando p(x1): ',px1)
print('Error en x1:     ',errorx1)
print(' Error relativo: ', errorx1rel)
print()
print('Evaluando en X2: ',x2)
print('Evaluando p(x2): ',px2)
print('Error en x2:     ',errorx2)
print(' Error relativo: ', errorx2rel)

# Grafica
plt.plot(xi,fi,'o',label='muestras' )
plt.plot(puntosx,puntosy,label='p(x)')
plt.plot(puntosx,puntosf,label='f(x)')
plt.xlabel('x')
plt.legend()
plt.show()