s1Eva_IIT2018_T1 Interpolar velocidad del paracaidista

Ejercicio: 1Eva_IIT2018_T1 Interpolar velocidad del paracaidista

El ejercicio tiene dos partes: la interpolación y el integral.

Literal ahttps://www.dreamstime.com/stock-photo-skydiving-formation-group-people-image62015024

No se especifica el método a seguir, por lo que se puede seleccionar el de mayor preferencia.

Usando Lagrange, con los puntos primero, medio y último:

p_2(t) = 0\frac{(t-4)(t-8)}{(0-4)(0-8)} + + 27.77\frac{(t-0)(t-8)}{(4-0)(4-8)} + + 41.10\frac{(t-0)(t-4)}{(8-0)(8-4)} p_2(t) = 0 + 27.77\frac{t(t-8)}{-16}) + + 41.10\frac{t(t-4)}{32} p_2(t) = -1.73(t^2-8t) + 1.28(t^2-4t) p_2(t) = -0.45 t^2 + 8.72t


Literal b

El tema de integración para primera evaluación se realiza de forma analítica.

Una de las formas, independiente si resolvió el literal a, es usar los datos proporcionados en la tabla el ejercicio:

t [s] 0 2 4 6 8
v(t) [m/s] 0.0 16.40 27.77 35.64 41.10

Usando el método de Simpson de 1/3, dado que los tamaños de paso en t son equidistantes se puede aplicar: h=2-0=2

\int_0^8 v(t)dt = \frac{2}{3}\Big( 0+ 4(16.40)+27.77\Big) + \frac{2}{3}\Big( 27.77+ 4(35.64)+41.10\Big) =203.2

con error del orden de O(h5) que al considerar h=2 no permite hacer una buena estimación. Sin embargo la respuesta es bastante cercana si se usa el método el trapecio con el algoritmo:

v(t) =  -0.45125*t**2 + 8.7475*t
distancia recorrida:  202.8912640000001

El error entre los métodos es |203.2-202.89|= 0.31


Algoritmo con Python

Las instrucciones en Python para el ejercicio son:

# 1ra Evaluación II Término 2018
# Tema 1. Interpolar velocidad del paracaidista

import numpy as np
import matplotlib.pyplot as plt
import sympy as sym

# Literal a)
def interpola_lagrange(xi,yi):
    '''
    Interpolación con método de Lagrange
    resultado: polinomio en forma simbólica
    '''
    # PROCEDIMIENTO
    n = len(xi)
    x = sym.Symbol('x')
    # Polinomio
    polinomio = 0
    for i in range(0,n,1):
        # Termino de Lagrange
        termino = 1
        for j  in range(0,n,1):
            if (j!=i):
                termino = termino*(x-xi[j])/(xi[i]-xi[j])
        polinomio = polinomio + termino*yi[i]
    # Expande el polinomio
    polinomio = polinomio.expand()
    return(polinomio)

# INGRESO
t = [0.0, 2, 4, 6, 8]
v = [0.0, 16.40, 27.77, 35.64, 41.10]

xi = [t[0],t[2],t[4]]
yi = [v[0],v[2],v[4]]

muestras = 51

# PROCEDIMIENTO
polinomio = interpola_lagrange(xi,yi)
velocidad = polinomio.subs('x','t')

# Para graficar
vt = sym.lambdify('t',velocidad)
a = t[0]
b = t[-1]
ti = np.linspace(a, b, muestras)
vi = vt(ti)

# SALIDA
print('v(t) = ', velocidad)
# Grafica
plt.plot(t,v,'ro')
plt.plot(ti,vi)
plt.title('Interpolar velocidad de paracidista')
plt.xlabel('t')
plt.ylabel('v')
plt.show()


# Literal b
def integratrapecio(funcionx,a,b,tramos):
    h = (b-a)/tramos
    x = a
    suma = funcionx(x)
    for i in range(0,tramos-1,1):
        x = x+h
        suma = suma + 2*funcionx(x)
    suma = suma + funcionx(b)
    area = h*(suma/2)
    return(area)

# INGRESO
# El ingreso es el polinomio en forma lambda
# se mantienen las muestras
tramos = muestras-1
# PROCEDIMIENTO
distancia = integratrapecio(vt,a,b,tramos)

# SALIDA
print('distancia recorrida: ', distancia)