3Eva_2021PAOII_T4 Arena y grava de canteras

3ra Evaluación 2021-2022 PAO II. 8/Febrero/2022

Tema 4. (20 puntos) Un ingeniero civil que trabaja en la construcción requiere 4800, 5800 y 5700 m3 de arena, grava fina, y grava gruesa, respectivamente, para cierto proyecto constructivo.

Hay tres canteras de las que puede obtenerse dichos materiales.

La composición de dichas canteras es la que sigue:

Arena % Grava fina % Grava gruesa %
Cantera 1 25 45 30
Cantera 2 55 30 15
Cantera 3 25 20 55

¿Cuántos metros cúbicos deben extraerse de cada cantera a fin de satisfacer las necesidades del ingeniero?

a) Plantear el problema usando las ecuaciones y representación matricial para usar un método iterativo,

b) Presentar la matriz ampliada y realice el pivoteo parcial por filas,

c) Seleccionar un vector inicial acorde con el ejercicio (evite usar el vector cero)

d) Realice al menos 3 iteraciones con un método iterativo para la solución de sistemas de ecuaciones. Identifique claramente el método a usar y en cada iteración debe escribir las expresiones completas que permitan verificar el uso del método.

e) Determine y justifique si el método converge

Rúbrica: literal a (3 puntos), literal b (3 puntos), literal c (3puntos), literal d (8 puntos), literal e (3 puntos)

Referencia: Chapra (2006) 5Ed. problema 12.13 p342.
Canteras de la vía a la costa tienen hasta el 31 de diciembre para mostrar su permiso ambiental. eluniverso.com. 7/junio/2019. https://www.eluniverso.com/guayaquil/2019/06/17/nota/7381902/canteras-tienen-hasta-31-diciembre-mostrar-su-permiso-ambiental/

tabla = [[25,45,30],
         [55,30,15],
         [25,20,55]]

3Eva_2021PAOII_T3 interpolar cadena desenrollando y cayendo

3ra Evaluación 2021-2022 PAO II. 8/Febrero/2022

Tema 3. (20 puntos) Para simplificar la ecuación que describe la cantidad de cadena que se desenrolla en las condiciones del tema anterior, se han obtenido datos experimentales descritos en la tabla presentada.

ti 0.0 0.1 0.2 0.25 0.35 0.45 0.5 0.6
xi 3.0 3.0601 3.2426 3.3818 3.7632 4.2951 4.6239 5.4237
ti 0.7 0.8 0.85 0.95 1
xi 6.4405 7.7149 8.4642 10.2245 11.2531

Realice un polinomio de interpolación de grado 4 para el Intervalo entre x0= 3 y la longitud de la cadena L=8

a) Identifique los pares ordenados a usar en la interpolación

b) Seleccione un método de interpolación apropiado para las condiciones dadas, justifique.

c) Desarrolle el método de interpolación, usando expresiones completas que muestre el uso de los pares seleccionados en el literal a.

d) Calcule el error sobre el o los datos que no se usaron en el intervalo

e) Escriba sus conclusiones y recomendaciones sobre los resultados obtenidos entre los dos polinomios.

Rúbrica: literal a (3 puntos), literal b (2 puntos), literal c (10 puntos), literal d (2 puntos). literal e (3 puntos).

ti = [0, 0.1, 0.2, 0.25, 0.35, 0.45, 0.5, 0.6, 0.7, 0.8, 0.85, 0.95, 1]
xi = [3, 3.06, 3.2426, 3.3818, 3.7632, 4.2951, 4.6239, 5.4237, 6.4405, 7.7149, 8.4642,10.2245,11.25]

3Eva_2021PAOII_T2 EDO cadena desenrollando y cayendo

3ra Evaluación 2021-2022 PAO II. 8/Febrero/2022

Tema 2. (30 puntos) Cadena cayendo. Una parte de una cadena de L= 8pies de longitud está enrollada sin apretar alrededor de una clavija en el borde de una plataforma horizontal y la parte restante de la cadena cuelga descansando sobre el borde de la plataforma. Por simplicidad, use g=32 pies/s2.

Suponga que la longitud de la cadena que cuelga es de X0=3 pies, que la cadena pesa 2 lb/pie y que la dirección positiva es hacia abajo.

Comenzando en t=0 segundos, el peso de la cadena que cuelga causa que la cadena sobre la plataforma se desenrolle suavemente y caiga al piso.

Si x(t) denota la longitud de la cadena que cuelga de la mesa al tiempo t=0, entonces v=dx/dt es su velocidad.  V0=0

Cuando se desprecian todas las fuerzas de resistencia se puede demostrar que un modelo matemático que relaciona a v con x está dado por la ecuación mostrada.

\frac{\delta^2 x}{\delta t^2 } - \frac{g}{L} x=0

0≤x≤L

a) Resuelva v(x) usando Runge-Kutta, considere h=0.05

b) Aproxime el tiempo que tarda el resto de la cadena en deslizarse de la plataforma.

c) Estime la velocidad a la cual el extremo de la cadena sale del borde de la plataforma.

Rúbrica: Planteamiento del problema(5 puntos), plantear el método (5 puntos), literal b, iteraciones (10 puntos), valor del tiempo (5 puntos). literal c (5 puntos).

Referencias: Cadena cayendo: Zill Dennis, Ecuaciones Diferenciales 9Ed, Ejercicios 45 p.69 Cadena cayendo. Zayas Martín, Una Física Simplificada (min[30-34]) https://youtu.be/dPn_ggi6zx0?t=1802 ,
Tripulación de barco pierde control de un ancla y provoca accidente.

 

3Eva_2021PAOII_T1 Area con derrame de petroleo usando Simpson

3ra Evaluación 2021-2022 PAO II. 8/Febrero/2022

Tema 1. (30 puntos) Se reportó un derrame de petróleo del pasado 15 de enero del 2022 en una refinería en el vecino país del sur,
que contaminó al menos 24 playas de la costa central, según indicó el organismo de la Dirección General de Salud Ambiental e Inocuidad Alimentaria.

Usando fotografías aéreas, la guardia costera obtuvo las dimensiones del derrame descrita en la figura y en la tabla mostrada:

x 0 100 200 300 400 470 600 700 800 900 1000
f(x) 0 230 310 300 300 320 400 380 320 230 0
g(x) 0 -200 -200 -330 -320 -350 -400 -400 -360 -260 0

a) Estime el área afectada por el derrame de petróleo, usando principalmente los métodos Simpson
b) Justifique el uso de las formulas compuestas usadas
c) Calcule el error del integral, para toda el área

Rúbrica: literal b (5 puntos), literal a, con expresiones detalladas para cada eje (20 puntos), literal c (5 puntos)

Referencia: Tan S.T (1994). Numerical Integration 7.3 Ejercicio 5.Calculus for the managerial, life, and Social sciences.
Eluniverso.com Derrames de petróleo, una lamentable afectación que es habitual a la región. 31 de enero, 2022. https://www.eluniverso.com/noticias/internacional/derrames-de-petroleo-una-lamentable-afectacion-que-es-habitual-a-la-region-nota/

x  = [0.0, 100, 200, 300, 400, 470, 600, 700, 800, 900, 1000]
fx = [0.0, 230, 310, 300, 300, 320, 400, 380, 320, 230, 0]
gx = [0.0,-200,-200,-330,-320,-350,-400,-400,-360,-260, 0]

 

3Eva_2021PAOI_T4 Integral con Cuadratura Gaussiana

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 4 (30 puntos) Aproximar el siguiente integral usando Cuadratura Gaussiana

\int_0^{\pi/4} x^2 \sin (x) \delta x

a) Usado dos segmentos o tramos, y para dos puntos, n=2

b) compare sus resultados con n=3

c) Calcule error entre resultados

Referencia: Burden 8th Edition. Ejercicios 4.7 d.

Rúbrica: Planteo del ejercicio (5 puntos), literal a, con expresiones y valores completos (10 puntos), literal b, con n=3 (10 puntos). literal c (5 puntos).

3Eva_2021PAOI_T3 Respuesta a entrada cero en un sistema LTIC

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 2 (30 puntos) Para un circuito eléctrico mostrado en la figura, conocido también como un sistema LTIC (lineal contínuo invariante en el tiempo), la “respuesta a entrada cero” corresponde al comportamiento de la corriente y(t) cuando no se aplica una señal de entrada x(t) = 0.

La expresión que describe la relación de entrada x(t) y salida y(t) que permite analizar el sistema en un intervalo de tiempo es:

\frac{\delta^2 y(t)}{\delta t^2}+3 \frac{\delta y(t)}{ \delta t}+2 y(t) = \frac{\delta x(t)}{\delta t} =0

Los componentes inductores y capacitores almacenan energía representada como condiciones iniciales y0(t) =0 , y’0(t) =-5

Considere como de interés el intervalo de tiempo entre [0,6] con al menos 60 tramos.

a) Realice el planteamiento para encontrar y(t) con las condiciones dadas, usando el método de Runge-Kutta de 2do orden

b) Desarrolle tres iteraciones con expresiones y valores, mostrando el uso del método anterior.

Referencia: Lathi B.P and Green R.A.(2018). Capítulo 2.1 p151.Linear Systems and Signals Third Edition. Oxford University Press.
http://blog.espol.edu.ec/telg1001/ltic-respuesta-entrada-cero-con-python/

Rúbrica: Planteo de ejercicio para el método requerido (5 puntos), tamaño de paso (5 puntos), iteraciones completas (15 puntos), desarrollo algorítmico, gráfica (5 puntos)

3Eva_2021PAOI_T2 Tensiones mínimas en cables por carga variable

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 2 (20 puntos) Continuando con el ejercicio del tema anterior de la carga con dos cables, se requiere encontrar:

a) El valor de θ para el cual la tensión en los dos cables es la mínima posible. Use un algoritmo para encontrar las raíces, es decir TCA=TCB

b) Desarrolle al menos 2 iteraciones

c) El valor correspondiente de la tensión.

Nota: Plantear la solución del problema anterior como una función en Python, para usarla como parte del desarrollo de éste tema

Rúbrica: Planteamiento completo del ejercicio (5 puntos), desarrollo de expresiones  (10 puntos), literal b (5 puntos)

3Eva_2021PAOI_T1 Tensiones en cables por carga variable

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 1 (20 puntos) Una carga P está sostenida por dos cables como se muestra en la figura.

Las ecuaciones de equilibrio del sistema corresponden a:

\sum^n{F_x = 0} -T_{CA} \cos (\alpha) + T_{CB} \cos (\beta) + P \sin (\theta) = 0 \sum^n{F_y = 0} T_{CA} \sin (\alpha) + T_{CB} \sin (\beta) - P \cos (\theta) = 0

Se requiere determinar la tensión en cada cable para cualquiera de los valores de P y θ que se encuentran desde θ1=β-90° hasta θ2=90°- α , con incrementos dados Δθ.

Usando un algoritmo numérico con método directo para solución de un sistema de ecuaciones, determine para los siguientes conjuntos de  números: La tensión en cada cable para los valores de θ  que van de θ1 a θ2.

α = 35°, β = 75°, P = 400 lb, Δθ = 5°
α = 50°, β = 30°, P = 600 lb, Δθ = 5°
α = 40°, β = 60°, P = 2500 lb, Δθ = 5°

Nota: Observe que los valores de ángulos están presentados en grados sexagesimales

Referencia: Ferdinand P. Beer, E. Johnston, E. Eisenberg. 9va Ed. Cap2. Ejercicio 2.C4 Mecánica vectorial para ingenieros – Estática

Rúbrica: Planteamiento del problema (5 puntos), desarrollo del método directo (10 puntos), algoritmo (5 puntos)

3Eva_2020PAOII_T3 Deflexiones de una placa

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 3. (40 puntos) Una placa cuadrada, apoyada simplemente en sus extremos está sujeta a un carga por unidad de área q.


La deflexión en la dimensión z de determina resolviendo la EDP elíptica siguiente:

\frac{\partial^4 z}{\partial x^4} + 2\frac{\partial^4 z}{\partial x^2 \partial y^2} +\frac{\partial^4 z}{\partial y^4} =\frac{q}{D}

sujeta a condiciones de frontera en los extremos, donde la deflexión y la pendiente normal a la frontera son cero.

D = \frac{E \Delta x^3}{12(1-\sigma ^2)}

El parámetro D es la rigidez de flexión, donde E=módulo de elasticidad, Δz=espesor de la placa, σ=razón de Poisson.

Para simplificar, se define la variable u como sigue:


u = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}

Permitiendo volver a expresar la ecuación primera como:

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{q}{D}

Con lo que el problema se reduce a resolver de manera sucesiva las dos ecuaciones de Poisson.


Primero la ecuación respecto a u sujeta a la condición de frontera u = 0 en los extremos, después los resultados se emplean junto con la ecuación respecto a z sujeta a la condición de que z = 0 en los extremos.
Considere una placa de 2 metros de longitud en sus extremos, q= 33.6 k N/m2, σ =0.3, Δz = 0.01 m, E = 2×1011 Pa.

a) Plantee y desarrolle el ejercicio en papel para u(x,y) para al menos 3 puntos en la malla.
Utilice Δx = Δy = 0.5 para las iteraciones.

b) Desarrolle un algoritmo para determinar las deflexiones de una placa cuadrada sujeta a una carga constante por unidad de área resolviendo de manera sucesiva las dos ecuaciones.

Rúbrica: gráfica de malla (5 puntos), desarrollo de expresiones, agrupar constantes, y simplificación (10 puntos), iteraciones para 3 puntos (10 puntos), Revisión de errores (5 puntos). literal b (10 puntos)

Referencia: Deflexiones de una placa. Chapra 32.2 p938, pdf962

3Eva_2020PAOII_T2 EDO – Concentración de solución en tres tanques

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 2. (30 puntos) Tres tanques perfectamente aislados, completamente llenos con una solución cuya concentración es Ci (0) g/L.

Los tanques están interconectados en serie de tal forma que de añadir solución al primero, se transfiere la misma cantidad por la conexión al segundo y al tercero del cual rebosa hacia afuera del sistema.

El tercer tanque tiene una salida por rebose que mantiene constante el volumen V en cada tanque.

Desde un tiempo t0 = 0, al primer tanque se le añade una solución que tiene una concentración 50 g/L, a razón de 300 L/min.

Considere Ci (0) = 30 g/L y el volumen de cada tanque de 1000 L.
En cada tanque entre lo que recibe y se transfiere al siguiente tanque se obtienen las siguientes ecuaciones:

\frac{dC_1}{dt} = \frac{300}{1000}(50) - 0.3 C_1 \frac{dC_2}{dt} = 0.3C_1- 0.3 C_2 \frac{dC_3}{dt} = 0.3C_2- 0.3 C_3

Determine la concentración en cada tanque durante los 3 primeros minutos de iniciar el experimento usando un método de Runge-Kutta de 2do Orden. (tres iteraciones, estime cota del error)

Rúbrica: Planteo del sistema de ecuaciones en el método (10 puntos), iteraciones (15 puntos), estimar errores (5 puntos).

Referencia: GIE -FRSN-UTN. https://www.frsn.utn.edu.ar/gie/an/mnedo/ejercicios%20propuestos.pdf