s2Eva_2023PAOII_T2 Cable cuelga entre apoyos A y B

Ejercicio: 2Eva_2023PAOII_T2 Cable cuelga entre apoyos A y B

Literal a

La ecuación diferencial a resolver es:

\frac{d^2y}{dx^2} = \frac{w_0}{T_0} \Big[ 1+ \sin \Big(\frac{\pi x}{2l_B} \Big) \Big]

donde w0 = 1 000 lbs/ft, T0. = 0.588345×106.
dy(0)/dx = 0 y lB=200 de la gráfica presentada.

\frac{d^2y}{dx^2} = \frac{1000}{0.588345×10^6} \Big[ 1+ \sin \Big(\frac{\pi x}{2(200)} \Big) \Big]

Para usar Runge Kutta para segunda derivada:

z= y' = f(x,y,z) z' = (y')' = 0z + \frac{1000}{0.588345×10^6} \Big[ 1+ \sin \Big(\frac{\pi x}{2(200)} \Big) \Big] g(x,y,z) = \frac{1}{0.588345×10^3} \Big[ 1+ \sin \Big(\frac{\pi x}{2(200)} \Big) \Big]

los valores iniciales para el ejercicio acorde al enunciado son: x0 = 0, y0=0, z0 = 0, con h=0.5

literal b

para itera 0

K1y = h*z = 0.5*0 = 0 K1z = (0.5)\frac{1}{0.588345×10^3} \Big[ 1+ \sin \Big(\frac{\pi (0)}{2(200)} \Big) \Big] = 0.0008498 K2y = h*(z+K1z) = (0.5) (0+0.00084984) = 0.0004249 K2z = (0.5)\frac{1}{0.588345×10^3} \Big[ 1+ \sin \Big(\frac{\pi (0+0.5)}{2(200)} \Big) \Big] =0.0008531 y = 0+\frac{0+0.0004249}{2} = 0.0002124 z = 0+\frac{0.0008498+0.0008531}{2} = 0.0008515 x = 0 + 0.5 = 0.5

Desarrollar dos iteraciones adicionales como tarea.

Para las primeras iteraciones de un total de 400+1, los valores con Python y en resultados.txt :

estimado[xi,yi,zi,K1y,K2y,K1z,K2z]
[0.0000 0.0000e+00 0.0000e+00 
0.0000e+00 0.0000e+00 
0.0000e+00 0.0000e+00]

[0.5000 2.124603761398499073e-04 8.515101601627471980e-04 
0.000000000000000000e+00 4.249207522796998146e-04 
8.498415045593996292e-04 8.531788157660947667e-04]

[1.0000 8.515101601627470896e-04 1.706357605799455881e-03 
4.257550800813735990e-04 8.523444879644209281e-04 
8.531788157660947667e-04 8.565160755073224913e-04]

[1.5000 1.918817981939305653e-03 2.564542259712321911e-03 
8.531788028997279406e-04 1.281436840653389295e-03 
8.565160755073224913e-04 8.598532323184093513e-04]

[2.0000 3.416052419875068892e-03 3.426063993239661116e-03 
1.282271129856160955e-03 1.712197746015365740e-03 
8.598532323184093513e-04 8.631902347362692754e-04]
...

literal c

resultado en archivo.txt al ejecutar el algoritmo.

literal d

cable entre apoyos A y B

Algoritmo con Python

# 2Eva_2023PAOII_T2 Cable cuelga entre apoyos A y B
import numpy as np

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras):
    tamano = muestras + 1
    estimado = np.zeros(shape=(tamano,3+4),dtype=float)

    # incluye el punto [x0,y0,z0]
    estimado[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        estimado[i] = [xi,yi,zi,K1y,K2y,K1z,K2z]
    return(estimado)

# PROGRAMA PRUEBA
# Ref Rodriguez 9.1.1 p335 ejemplo.
# prueba y'-y-x+(x**2)-1 =0, y(0)=1

# INGRESO
T0 = 0.588345e6
LB = 200
f = lambda x,y,z: z
g = lambda x,y,z: (1000/T0)*(1+np.sin(np.pi*x/(2*LB)))
x0 = 0
y0 = 0
z0 = 0
h  = 0.5
muestras = 401

# PROCEDIMIENTO
puntosRK2 = rungekutta2_fg(f,g,x0,y0,z0,h,muestras)
xi = puntosRK2[:,0]
yiRK2 = puntosRK2[:,1]

# SALIDA
np.set_printoptions(precision=4)
print('estimado[xi,yi,zi,K1y,K2y,K1z,K2z]')
print(puntosRK2)
np.savetxt("tablaRk2.txt",puntosRK2)


# Gráfica
import matplotlib.pyplot as plt

plt.plot(xi[0],yiRK2[0],
         'o',color='r', label ='[x0,y0]')
plt.plot(xi[1:],yiRK2[1:],
         color='m',
         label ='y Runge-Kutta 2 Orden')

plt.title('EDO: Solución con Runge-Kutta 2do Orden')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid()
plt.show()

 

s2Eva_2023PAOII_T1 Volumen por solido de revolución

Ejercicio: 2Eva_2023PAOII_T1 Volumen por solido de revolución

El volumen se calcula a partir de la expresión:

V = \int_{a}^{b} \pi (f(x))^2 dx

literal a y c

Para el volumen con f(x) con al menos 3 tramos y un método de Simpson, directamente se puede usar 3/8. Por lo que se Se reemplaza en la fórmula de volumen del sólido de revolución f(x) con:

f(x) = \sqrt{\sin (x/2)}

obteniendo:

V_{fx} = \int_{a}^{b} \pi \Big(\sqrt{\sin (x/2)} \Big)^2 dx = \int_{a}^{b} \pi \sin (x/2) dx

La expresión dentro del integral se denomina como fv:

f_v (x)= \pi \sin (x/2)

en el intervalo [0.1, 1.8],  con al menos 3 tramos, se requieren 4 muestras con tamaño de paso hf: y truncando a 4 decimales los resultados calculados con Python.

h_f =\frac{b-a}{tramos} = \frac{1.8-0.1}{3} = 0.5666

los puntos de muestra quedan np.linspace(0.1,1.8,3+1):

xis= [0.1, 0.6666, 1.2333, 1.8 ]

El integral se calcula con los puntos de muestra,

V_{fx} = \frac{3}{8} (0.5666) \Big( f_v(0.1) +3 f_v(0.6666) + + 3 f_v(1.2333)+ f_v(1.8)\Big)

recordando que se usa en radianes,

V_{fx} = \frac{3}{8} (0.5666) \Bigg( \pi \sin \Big(\frac{0.1}{2}\Big) +3 \pi \sin \Big(\frac{0.6666}{2}\Big) + + 3 \pi \sin\Big(\frac{1.2333}{2}\Big)+ \pi \sin \Big(\frac{1.8}{2}\Big)\Bigg) = \frac{3}{8} (0.5666) \Big( 0.1570+3 (1.0279) + + 3 (1.8168)+ 2.4608\Big)

literal d. el volumen generado por f(x) tiene como resultado:

V_{fx} = 2.3698

la cota de error para fx es el orden de O(h5) = O(0.56665) = O(0.05843), queda como tarea completar la cota de error total.

literal b y c

Para el volumen con g(x) con al menos 2 tramos y Cuadratura de Gauss de dos puntos, se reemplaza en la fórmula de volumen de sólido de revolución:

g(x) = e^{x/3} - 1 V_{gx} = \int_{a}^{b} \pi (e^{x/3} - 1)^2 dx

La expresión dentro del integral se denomina como gv:

g_v = \pi (e^{x/3} - 1)^2

en el intervalo [0.1, 1.8],  con al menos 2 tramos, se requieren 3 muestras con tamaño de paso hg:

h_g =\frac{b-a}{tramos} = \frac{1.8-0.1}{2} = 0.85

xic = [0.1, 0.95, 1.8 ]

tramo 1: [0.1, 0.95] , a = 0.1 , b= 0.95, truncando a 4 decimales

x_a = \frac{0.95+0.1}{2} - \frac{0.95-0.1}{2}\frac{1}{\sqrt{3}} = 0.2796 x_b = \frac{0.95+0.1}{2} + \frac{0.95-0.1}{2}\frac{1}{\sqrt{3}} = 0.7703 g_v(0.2796) = \pi (e^{0.2796/3} - 1)^2 = 0.02998 g_v(0.7703) = \pi (e^{0.7703/3} - 1)^2 = 0.2692 V_{c1} = \frac{0.95-0.1}{2}(g_v(0.2796) + g_v(0.7703)) V_{c1} = \frac{0.95-0.1}{2}(0.02998 + 0.2692) V_{c1} = 0.1271

tramo 2: [0.95, 1.8] , a = 0.95 , b= 1.8

x_a = \frac{1.8+0.95}{2} - \frac{1.8-0.95}{2}\frac{1}{\sqrt{3}} = 1.1296 x_b = \frac{1.8+0.95}{2} - \frac{1.8-0.95}{2}\frac{1}{\sqrt{3}} = 1.6203 g_v(1.1296) = \pi (e^{1.1296/3} - 1)^2 = 0.6567 g_v(1.6203) = \pi (e^{1.6203/3} - 1)^2 = 1.6115 V_{c2} = \frac{1.8-0.95}{2}(g_v(1.1296) + g_v(1.6203)) V_{c2} = \frac{1.8-0.95}{2}(0.6567 + 1.6115) V_{c2} = 0.9640

literal d. volumen generado por g(x)

V_{gx} = V_{c1} + V_{c2} = 0.1271 + 0.9640 = 1.0912

completar la cota de error para cuadratura de Gauss de dos puntos.

literal e. El volumen de revolución se genera como la resta del volumen de f(x) y volumen g(x)

V = V_{fx} - V_{gx} = 2.3698 - 1.0912 = 1.2785

Algoritmo con Python

Los resultados usando el algoritmo con las operaciones usadas en el planteamiento son:

para f(x):
xis= [0.1        0.66666667 1.23333333 1.8       ]
fiv= [0.15701419 1.02791246 1.81684275 2.46089406]
Volumenfx:  2.369836948864926

para g(x):
Por tramos: [0.1  0.95 1.8 ]
xab= [0.2796261355944091, 0.770373864405591,
      1.129626135594409, 1.620373864405591]
gab= [0.02998177327492598, 0.26928904479784566,
      0.6567986343358181, 1.6115494735531555]
Vc1= 0.12719009768092793  ; Vc2= 0.964047945852814
Volumengx:  1.0912380435337419

Volumen solido revolucion: 1.2785989053311841

Considerando realizar los cálculos para cada sección:

# 2Eva_2023PAOII_T1 Volumen por solido de revolución
import numpy as np

# INGRESO
fx = lambda x: np.sqrt(np.sin(x/2))
gx = lambda x: np.exp(x/3)-1
a = 0.1
b = 1.8
tramosSimpson = 3
tramosCGauss = 2

# PROCEDIMIENTO
# Volumen para f(x) con Simpson
fv = lambda x: np.pi*np.sin(x/2)
hs = (b-a)/tramosSimpson
xis = np.linspace(a,b,tramosSimpson +1)
fiv = fv(xis)
Vs = (3/8)*hs*(fiv[0]+3*fiv[1]+3*fiv[2]+ fiv[3])

# Volumen para g(x) con Cuadratura de Gauss
gv = lambda x: np.pi*(np.exp(x/3)-1)**2
hc = (b-a)/tramosSimpson
xic = np.linspace(a,b,tramosCGauss +1)
# tramo 1
ac = xic[0]
bc = xic[1]
xa = (bc+ac)/2 + (bc-ac)/2*(-1/np.sqrt(3)) 
xb = (bc+ac)/2 + (bc-ac)/2*(1/np.sqrt(3))
Vc1 = (bc-ac)/2*(gv(xa)+gv(xb))
xab = [xa,xb]
gab = [gv(xa),gv(xb)]
# tramo 2
ac = xic[1]
bc = xic[2]
xa = (bc+ac)/2 + (bc-ac)/2*(-1/np.sqrt(3)) 
xb = (bc+ac)/2 + (bc-ac)/2*(1/np.sqrt(3))
Vc2 = (bc-ac)/2*(gv(xa)+gv(xb))
Vc = Vc1+Vc2
xab.append(xa)
xab.append(xb)
gab.append(gv(xa))
gab.append(gv(xb))

# Volumen solido revolucion
Volumen = Vs - Vc

# SALIDA
print("para f(x):")
print("xis=", xis)
print("fiv=", fiv)
print("Volumenfx: ",Vs)
print()
print("para g(x):")
print("Por tramos:",xic)
print("xab=", xab)
print("gab=", gab)
print("Vc1=",Vc1," ; Vc2=",Vc2) 
print("Volumengx: ",Vc)
print()
print("Volumen solido revolucion:",Volumen)

para la gráfica presentada en el enunciado (no requerida) , se complementa con las instrucciones:

# para grafica -------------------
import matplotlib.pyplot as plt
muestras = 21 # grafica
xi = np.linspace(a,b,muestras)
fi = fx(xi)
gi = gx(xi)
xig = np.linspace(a,b,tramosCGauss+1)
fis = fx(xis)
gig = gx(xig)

# grafica
plt.plot(xi,fi, label="f(x)")
plt.plot(xi,gi, label="g(x)")
plt.plot([0.0,2.0],[0,0], marker=".", color="blue")
plt.fill_between(xi,fi,gi,color="lightgreen")
plt.axhline(0)
plt.axvline(a, linestyle="dashed")
plt.axvline(b, linestyle="dashed")
plt.xlabel('x')
plt.ylabel('f(x), g(x)')
plt.legend()
plt.plot(xis,fis,'.b')
plt.plot(xig,gig,'.r')
plt.grid()
plt.show()

Gráfica de sólido de revolución en 3D

sólido de revolución 3D

Instrucciones en Python

# 2Eva_2023PAOII_T1 Volumen por solido de revolución
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d

# INGRESO
f = lambda x: np.sqrt(np.sin(x/2))
g = lambda x: np.exp(x/3)-1

# eje x
xa = 0.1
xb = 1.8
xmuestras = 31
# angulo w de rotación
w_a = 0
w_b = 2*np.pi
w_muestras = 31

# PROCEDIMIENTO
# muestreo en x y angulo w
xi = np.linspace(xa, xb, xmuestras)
wi = np.linspace(w_a, w_b, w_muestras)
X, W = np.meshgrid(xi, wi)

# evalua f(x) en 3D
Yf = f(xi)*np.cos(W)
Zf = f(xi)*np.sin(W)

# evalua g(x) en 3D
Yg = g(xi)*np.cos(W)
Zg = g(xi)*np.sin(W)

# SALIDA

# grafica 3D
figura = plt.figure()
grafica = figura.add_subplot(111, projection='3d')

grafica.plot_surface(X, Yf, Zf,
                     color='blue', label='f(x)',
                     alpha=0.3, rstride=6, cstride=12)
grafica.plot_surface(X, Yg, Zg,
                     color='orange', label='g(x)',
                     alpha=0.3, rstride=6, cstride=12)

grafica.set_title('Solidos de revolución')
grafica.set_xlabel('x')
grafica.set_ylabel('y')
grafica.set_zlabel('z')
# grafica.legend()
eleva = 45
rota = 45
deltaw = 5
grafica.view_init(eleva, rota)

# rotacion de ejes
for angulo in range(rota, 360+rota, deltaw ):
    grafica.view_init(eleva, angulo)
    plt.draw()
    plt.pause(.001)
plt.show()

s2Eva_2023PAOI_T3 EDP elíptica, placa rectangular con frontera variable

Ejercicio: 2Eva_2023PAOI_T3 EDP elíptica, placa rectangular con frontera variable

Dada la EDP elíptica,

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = \Big( x^2 + y^2 \Big) e^{xy} 0 \lt x \lt 1 0 \lt y \lt 0.5

Se convierte a la versión discreta usando diferencias divididas centradas, según se puede mostrar con la gráfica de malla.

literal b

EDP eliptica rectangular frontera variable

literal a


\frac{u[i-1,j]-2u[i,j]+u[i+1,j]}{\Delta x^2} + + \frac{u[i,j-1]-2u[i,j]+u[i,j+1]}{\Delta y^2} = \Big( x^2 + y^2 \Big) e^{xy}

literal c

Se agrupan los términos Δx, Δy semejante a formar un λ al multiplicar todo por Δy2

\frac{\Delta y^2}{\Delta x^2}\Big(u[i-1,j]-2u[i,j]+u[i+1,j] \Big) + + \frac{\Delta y^2}{\Delta y^2}\Big(u[i,j-1]-2u[i,j]+u[i,j+1]\Big) = \Big( x^2 + y^2 \Big) e^{xy}\frac{\Delta y^2}{\Delta x^2}

los tamaños de paso en ambos ejes son de igual valor, se simplifica la ecuación

\lambda= \frac{\Delta y^2}{\Delta x^2} = 1

se simplifica el coeficiente en λ =1

u[i-1,j]-2u[i,j]+u[i+1,j] + + u[i,j-1]-2u[i,j]+u[i,j+1] = \Big( x^2 + y^2 \Big) e^{xy}

Se agrupan los términosiguales

u[i-1,j]-4u[i,j]+ u[i+1,j] + u[i,j-1] +u[i,j+1] = \Big( x^2 + y^2 \Big) e^{xy}

Se desarrollan las iteraciones para tres rombos y se genera el sistema de ecuacioens a resolver.
para i=1,j=1

u[0,1]-4u[1,1]+ u[2,1] + u[1,0] +u[1,2] = \Big( x[1]^2 + y[1]^2 \Big) e^{x[1]y[1]} 1-4u[1,1]+ u[2,1] + 1 + \frac{1}{8} = \Big( 0.25^2 + 0.25^2 \Big) e^{(0.25) (0.25)} -4u[1,1]+ u[2,1] = \Big( 0.25^2 + 0.25^2 \Big) e^{(0.25) (0.25)} - \frac{1}{8}

para i=2, j=1

u[1,1]-4u[2,1]+ u[3,1] + u[2,0] +u[2,2] = \Big( x[2]^2 + y[1]^2 \Big) e^{x[2]y[1]} u[1,1]-4u[2,1]+ u[3,1] + 1 + 0.25 = \Big( 0.5^2 + 0.25^2 \Big) e^{(0.5)(0.25)} u[1,1]-4u[2,1]+ u[3,1] = \Big( 0.5^2 + 0.25^2 \Big) e^{(0.5)(0.25)} -1.25

para i=3, j=1

u[2,1]-4u[3,1]+ u[4,1] + u[3,0] +u[3,2] = \Big( x[3]^2 + y[1]^2 \Big) e^{x[3]y[1]} u[2,1]-4u[3,1]+ 0.25 + 0 + \frac{3}{8} = \Big( 0.75^2 + 0.25^2 \Big) e^{(0.75)(0.25)} u[2,1]-4u[3,1] = \Big( 0.75^2 + 0.25^2 \Big) e^{(0.75)(0.25)} - 0.25 - \frac{3}{8}

con lo que se puede crear un sistema de ecuaciones y resolver el sistema para cada punto desconocido

\begin{pmatrix} -4 & 1 & 0 & \Big| & 0.008061807364732415 \\ 1 & -4 & 1 & \Big| & -0.8958911084166168 \\0 & 1 & -4 &\Big| & 0.1288939058881129 \end{pmatrix}

se obtiene los resultados para:

u[1,1] = 0.05953113
u[2,1] = 0.24618634
u[3,1] = 0.02932311

>>> import numpy as np
>>> (0.25**2+0.25**2)*np.exp(0.25*0.25) - 1/8
0.008061807364732415
>>> (0.5**2+0.25**2)*np.exp(0.5*0.25) - 1.25
-0.8958911084166168
>>> (0.75**2+0.25**2)*np.exp(0.75*0.25) - 0.25 -3/8
0.1288939058881129
>>> A=[[-4,1,0],[1,-4,1],[0.0,1.0,-4.0]]
>>> B = [0.008061807364732415, -0.8958911084166168, 0.1288939058881129]
>>> np.linalg.solve(A,B)
array([0.05953113, 0.24618634, 0.02932311])

s2Eva_2023PAOI_T2 Péndulo vertical amortiguado

Ejercicio: 2Eva_2023PAOI_T2 Péndulo vertical amortiguado

literal a

\frac{d^2 \theta}{dt^2} = -\mu \frac{d\theta}{ dt}-\frac{g}{L}\sin (\theta)

Se simplifica su forma a:

\frac{d\theta}{dt}= z = f_t(t,\theta,z) \frac{d^2\theta }{dt^2}= z' = -\mu z -\frac{g}{L}\sin (\theta) = g_t(t,\theta,z)

se usan los valores dados: g = 9.81 m/s2, L = 2 m

f_t(t,\theta,z) = z g_t(t,\theta,z) = - 0.5 z -\frac{9.81}{2}\sin (\theta)

y los valores iniciales para la tabla: θ(0) = π/4 rad, θ’ (0) = 0 rad/s, se complementan los valores en la medida que se aplica el desarrollo.

ti θ(ti) θ'(ti)=z
0 π/4 0
0.2 0.7161 -0.6583
0.4 0.5267 -0.1156
0.6 0.2579 -0.1410

literal b

Iteración 1:  ti = 0 ; yi = π/4 ; zi = 0

K1y = h * ft(ti,yi,zi) 
    = 0.2*(0) = 0
K1z = h * gt(ti,yi,zi) 
    = 0.2*(-0.5(0) -(9.81/2)sin (π/4) = -0.6930
        
K2y = h * ft(ti+h, yi + K1y, zi + K1z)
    = 0.2*(0-0.6930)= -0.1386
K2z = h * gt(ti+h, yi + K1y, zi + K1z)
    = 0.2*(-0.5(0-0.6930) -(9.81/2)sin(π/4-0) 
    = -0.6237

yi = yi + (K1y+K2y)/2 
   = π/4+ (0+(-0.1386))/2 = 0.7161
zi = zi + (K1z+K2z)/2 
   = 0+(-0.6930-0.6237)/2 = -0.6583
ti = ti + h = 0 + 0.2 = 0.2

estimado[i] = [0.2,0.7161,-0.6583]

Iteración 2:  ti = 0.2 ; yi = 0.7161 ; zi = -0.6583

K1y = h * ft(ti,yi,zi) 
    = 0.2*(-0.6583) = -0.1317
K1z = h * gt(ti,yi,zi) 
    = 0.2*(- 0.5 ( -0.6583) -(9.81/2)sin (0.7161) 
    = -0.5775
        
K2y = h * ft(ti+h, yi + K1y, zi + K1z)
    = 0.2*(-0.6583 -0.5775)= -0.2472
K2z = h * gt(ti+h, yi + K1y, zi + K1z)
    = 0.2*(- 0.5 (-0.6583 -0.5775) -(9.81/2)sin(0.7161-0.1317) 
    = -0.4171

yi = yi + (K1y+K2y)/2 
   = 0.7161 + (-0.1317-0.2472)/2 = 0.5267
zi = zi + (K1z+K2z)/2 
   = -0.6583+(-0.5775-0.4171)/2 = -0.1156
ti = ti + h = 0.2 + 0.2 = 0.4

estimado[i] = [0.4,0.5267,-0.1156]

Iteración 3:  ti = 0.4 ; yi = 0.5267 ; zi = -1.156

K1y = h * ft(ti,yi,zi) 
    = 0.2*(-1.156) = -0.2311
K1z = h * gt(ti,yi,zi) 
    = 0.2*(- 0.5(-1.156) -(9.81/2)sin (0.5267) 
    = -0.3771
        
K2y = h * ft(ti+h, yi + K1y, zi + K1z)
    = 0.2*(-1.156 -0.3771)= -0.3065
K2z = h * gt(ti+h, yi + K1y, zi + K1z)
    = 0.2*(- 0.5 ( -1.156 -0.3771) -(9.81/2)sin(0.5267-0.2311) 
    = -0.1322

yi = yi + (K1y+K2y)/2 
   = 0.5267 + (-0.2311-0.3065)/2 = 0.2579
zi = zi + (K1z+K2z)/2 
   = -1.156+(-0.3771-0.1322)/2 = -1.410
ti = ti + h = 0.4 + 0.2 = 0.6

estimado[i] = [0.6,0.2579,-1.410]

literal c

resultados del algoritmo:

[ t, 		 y, 	 dyi/dti=z,  K1y,	 K1z,	    K2y,      K2z]
[[ 0.000e+00  7.854e-01  0.000e+00  0.000e+00  0.000e+00  0.000e+00   0.000e+00]
 [ 2.000e-01  7.161e-01 -6.583e-01  0.000e+00 -6.930e-01 -1.386e-01  -6.237e-01]
 [ 4.000e-01  5.267e-01 -1.156e+00 -1.317e-01 -5.775e-01 -2.472e-01  -4.171e-01]
 [ 6.000e-01  2.579e-01 -1.410e+00 -2.311e-01 -3.771e-01 -3.065e-01  -1.322e-01]
 [ 8.000e-01 -3.508e-02 -1.377e+00 -2.820e-01 -1.089e-01 -3.038e-01    1.756e-01]
...

péndulo amortiguado 03

con h=0.2 se tienen 1/0.2 = 5 tramos por segundo, por lo que para 10 segundo serán 50 tramos. La cantidad de muestras = tramos + 1(valor inicial) = 51

con lo que se puede usar el algoritmo en EDO Runge-Kutta d2y/dx2

literal d

Se observa que la respuesta es oscilante y amortiguada en magnitud como se esperaba según el planteamiento. Con el tiempo se estabilizará en cero.

Instrucciones en Python

# 2Eva_2023PAOI_T2 Péndulo vertical amortiguado
import numpy as np
import matplotlib.pyplot as plt

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras):
    tamano = muestras + 1
    estimado = np.zeros(shape=(tamano,7),dtype=float)
    # incluye el punto [x0,y0,z0]
    estimado[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        estimado[i] = [xi,yi,zi,K1y,K1z,K2y,K2z]
    return(estimado)

# INGRESO theta = y
g = 9.8
L  = 2
ft = lambda t,y,z: z
gt = lambda t,y,z: -0.5*z +(-g/L)*np.sin(y)

t0 = 0
y0 = np.pi/4
z0 = 0
h = 0.2
muestras = 51

# PROCEDIMIENTO
tabla = rungekutta2_fg(ft,gt,t0,y0,z0,h,muestras)

# SALIDA
np.set_printoptions(precision=3)
print(' [ t, \t\t y, \t dyi/dti=z, K1y,\t K1z,\t K2y,\t K2z]')
print(tabla)

# Grafica
ti = np.copy(tabla[:,0])
yi = np.copy(tabla[:,1])
zi = np.copy(tabla[:,2])
plt.subplot(121)
plt.plot(ti,yi)
plt.grid()
plt.xlabel('ti')
plt.title('yi')
plt.subplot(122)
plt.plot(ti,zi, color='green')
plt.xlabel('ti')
plt.title('dyi/dti')
plt.grid()
plt.show()

s2Eva_2023PAOI_T1 Material para medalla de academia

Ejercicio: 2Eva_2023PAOI_T1 Material para medalla de academia

medalla area con integral numerico f(x) = 2-8\Big( \frac{1}{2} - x \Big)^2

0 \le x \lt 1 g(x) = -\Big( 1-x\Big)\ln \Big( 1- x \Big)

Para f(x) se usará Simpson de 1/3 que requiere al menos dos tramos para aplicar:

a. Realice el planteamiento de las ecuaciones para el ejercicio.

I\cong \frac{h}{3}[f(x_0)+4f(x_1) + f(x_2)]

b. Describa el criterio usado para determinar el número de tramos usado en cada caso.

h = \frac{b-a}{2} = \frac{1-0}{2} = 0.5

c. Desarrolle las expresiones completas del ejercicio para cada función.

I_{fx}\cong \frac{0.5}{3}[f(0)+4f(0.5) + f(1)] f(0) = 2-8\Big( \frac{1}{2} - (0) \Big)^2 = 0 f(0.5) = 2-8\Big( \frac{1}{2} - (0.5) \Big)^2 = 2 f(1) = 2-8\Big( \frac{1}{2} - (1) \Big)^2 = 0 I_{fx} = \frac{1}{6}[0+4(2) + 0] = \frac{8}{6} = \frac{4}{3} = 1.3333

cota de error O(h5) = O(0.55)= O(0.03125)

Para g(x) se usará Simpson de 3/8 que requiere al menos tres tramos para aplicar:

I\cong \frac{3h}{8}[f(x_0)+3f(x_1) +3 f(x_2)+f(x_3)] h = \frac{b-a}{3} = \frac{1-0}{3} = 0.3333 I_{gx}\cong \frac{3(0.3333)}{8}[f(0)+3f(0.3333) +3 f(0.6666)+f(1)] g(0) = -\Big( 1-0\Big)\ln \Big( 1- 0 \Big) = 0 g(0.3333) = -\Big( 1-0.3333\Big)\ln \Big( 1- 0.3333 \Big) = 0.2703 g(0.6666) = -\Big( 1-0.6666\Big)\ln \Big( 1- 0.6666 \Big) = 0.3662 g(0.9999) = -\Big( 1-0.9999\Big)\ln \Big( 1- 0.9999 \Big) = 0

para la evaluación numérica de 1 se usa un valor muy cercano desplazado con la tolerancia aplicada.

I_{gx}\cong \frac{3(0.3333)}{8}[0+3(0.2703) + 3(0.3662)+0] = 0.2387

d. Indique el resultado obtenido para el área requerida y la cota de error
Area = I_{fx} – I_{gx} = 1.3333 – 0.2387 = 1.0945

cota de error = O(0.03125) + O(0.00411) = 0.03536

e. Encuentre el valor del tamaño de paso si se requiere una cota de error de 0.00032

Si el factor de mayor error es de Simpson 1/3, se considera como primera aproximación que:

cota de error O(h5) = O(0.00032), h = (0.00032)(1/5) = 0.2
es decir el número de tramos es de al menos (b-a)/tramos = 0.2 , tramos = 5.
El número de tramos debe ser par en Simpson de 1/3, por lo que se toma el entero mayor tramos=6 y el tamaño de paso recomendado es al menos 1/6. EL error al aplicar 3 veces la formula es 3(O((1/6)5)) = 0.0003858.

Lo que podría indicar que es necesario al menos dos tramos adicionales con h=1/8 y error O(0,00012) que cumple con el requerimiento.

Se puede aplicar el mismo criterio para Simpson 3/8 y se combinan los errores para verificar que cumplen con el requerimiento.

Algoritmo con Python

Resultados

Ifx:  1.3333332933359998
Igx:  0.238779092876627
Area:  1.094554200459373

medalla area con integral numerico

Instrucciones en Python usando las funciones

# 2Eva_2023PAOI_T1 Material para medalla de academia
import numpy as np
import matplotlib.pyplot as plt

def integrasimpson13_fi(xi,fi,tolera = 1e-10):
    ''' sobre muestras de fi para cada xi
        integral con método de Simpson 1/3
        respuesta es np.nan para tramos desiguales,
        no hay suficientes puntos.
    '''
    n = len(xi)
    i = 0
    suma = 0
    while not(i>=(n-2)):
        h = xi[i+1]-xi[i]
        dh = abs(h - (xi[i+2]-xi[i+1]))
        if dh<tolera:# tramos iguales
            unS13 = (h/3)*(fi[i]+4*fi[i+1]+fi[i+2])
            suma = suma + unS13
        else:  # tramos desiguales
            suma = 'tramos desiguales'
        i = i + 2
    if i<(n-1): # incompleto, faltan tramos por calcular
        suma = 'tramos incompletos, faltan '
        suma = suma ++str((n-1)-i)+' tramos'
    return(suma)

def integrasimpson38_fi(xi,fi,tolera = 1e-10):
    ''' sobre muestras de fi para cada xi
        integral con método de Simpson 3/8
        respuesta es np.nan para tramos desiguales,
        no hay suficientes puntos.
    '''
    n = len(xi)
    i = 0
    suma = 0
    while not(i>=(n-3)):
        h  = xi[i+1]-xi[i]
        h1 = (xi[i+2]-xi[i+1])
        h2 = (xi[i+3]-xi[i+2])
        dh = abs(h-h1)+abs(h-h2)
        if dh<tolera:# tramos iguales
            unS38 = fi[i]+3*fi[i+1]+3*fi[i+2]+fi[i+3]
            unS38 = (3/8)*h*unS38
            suma = suma + unS38
        else:  # tramos desiguales
            suma = 'tramos desiguales'
        i = i + 3
    if (i+1)<n: # incompleto, tramos por calcular
        suma = 'tramos incompletos, faltan '
        suma = suma +str(n-(i+1))+' tramos'
    return(suma)

# INGRESO
fx = lambda x: 2-8*(0.5-x)**2
gx = lambda x: -(1-x)*np.log(1-x)
a = 0
b = 1-1e-4
muestras1 = 2+1
muestras2 = 3+1

# PROCEDIMIENTO
xi1 = np.linspace(a,b,muestras1)
xi2 = np.linspace(a,b,muestras2)
fi = fx(xi1)
gi = gx(xi2)

Ifx = integrasimpson13_fi(xi1,fi)
Igx = integrasimpson38_fi(xi2,gi)
Area = Ifx - Igx

# SALIDA
print('Ifx: ', Ifx)
print('Igx: ', Igx)
print('Area: ', Area)

plt.plot(xi1,fi,'ob',label='f(x)')
plt.plot(xi2,gi,'or', label='g(x)')
plt.grid()
plt.legend()
plt.xlabel('xi')

# curvas suave con mas muestras (no en evaluación)
xi = np.linspace(a,b,51)
fxi = fx(xi)
gxi = gx(xi)
plt.fill_between(xi,fxi,gxi,color='navajowhite')
plt.plot(xi,fxi,color='blue',linestyle='dotted')
plt.plot(xi,gxi,color='red',linestyle='dotted')

plt.show()

s2Eva_2022PAOII_T3 EDP Parabólica con coseno 3/4π

Ejercicio: 2Eva_2022PAOII_T3 EDP Parabólica con coseno 3/4π

\frac{\partial^2 u}{\partial x^2} = b \frac{\partial u}{\partial t}

2Eva_2022PAOII_T3 EDP Parabolica Malla

\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^2} = b\frac{u_{i,j+1}-u_{i,j}}{\Delta t}

agrupando variables

\frac{\Delta t}{b} \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^2} = \frac{\Delta t}{b}b\frac{u_{i,j+1}-u_{i,j}}{\Delta t} λ = \frac{\Delta t}{b(\Delta x)^2} λ = \frac{0.002}{2(0.2)^2} =0.025

como λ<0.5 el método converge.

\lambda \Big[u[i+1,j]-2u[i,j]+u[i-1,j]\Big] = u[i,j+1]-u[i,j]

por el método explícito:

u[i,j+1] =\lambda \Big[u[i+1,j]-2u[i,j]+u[i-1,j]\Big] + u[i,j] u[i,j+1] =\lambda u[i+1,j]+(1-2\lambda)u[i,j]+\lambda u[i-1,j]

iteración i=1, j=0

u[1,1] =\lambda u[0,0]+(1-2\lambda)u[1,0]+\lambda u[2,0] u[1,1] =0.025(1) +(1-2(0.025))\cos \Big( \frac{3π}{2}0.2\Big)+0.025 \cos \Big( \frac{3π}{2}0.4\Big)

iteración i=2, j=0

u[2,1] =\lambda u[1,0]+(1-2\lambda)u[2,0]+\lambda u[3,0] u[2,1] =0.025\cos \Big( \frac{3π}{2}0.2\Big) +(1-2(0.025))\cos \Big( \frac{3π}{2}0.4\Big) +0.025 \cos \Big( \frac{3π}{2}0.6\Big)

iteración i=3, j=0

u[3,1] =\lambda u[2,0]+(1-2\lambda)u[3,0]+\lambda u[4,0] u[3,1] =0.025\cos \Big( \frac{3π}{2}0.4\Big) +(1-2(0.025))\cos \Big( \frac{3π}{2}0.6\Big) +0.025 \cos \Big( \frac{3π}{2}0.8\Big)

iteración i=4, j=0

u[4,1] =\lambda u[3,0]+(1-2\lambda)u[4,0]+\lambda u[5,0] u[4,1] =0.025\cos \Big( \frac{3π}{2}0.6\Big) +(1-2(0.025))\cos \Big( \frac{3π}{2}0.8\Big) +0.025 (0)

continuar con las iteraciones en el algoritmo

Resultados con el algoritmo

Tabla de resultados
[[ 1.    1.    1.    1.    1.    1.    1.    1.    1.    1.  ]
 [ 0.59  0.58  0.56  0.55  0.54  0.53  0.53  0.52  0.51  0.5 ]
 [-0.31 -0.3  -0.3  -0.29 -0.28 -0.28 -0.27 -0.27 -0.26 -0.26]
 [-0.95 -0.93 -0.91 -0.89 -0.88 -0.86 -0.84 -0.82 -0.81 -0.79]
 [-0.81 -0.79 -0.78 -0.76 -0.74 -0.73 -0.71 -0.7  -0.68 -0.67]
 [ 0.    0.    0.    0.    0.    0.    0.    0.    0.    0.  ]]

2Eva2022PAOII_T3 EDP Parabolica 02

Instrucciones en Python

# EDP parabólicas d2u/dx2  = K du/dt
# método explícito,usando diferencias divididas
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
# Valores de frontera
Ta = 1
Tb = 0
#T0 = 25
fx = lambda x: np.cos(3*np.pi/2*x)
# longitud en x
a = 0
b = 1
# Constante K
K = 2
# Tamaño de paso
dx = 0.2
dt = dx/100
# iteraciones en tiempo
n = 10

# PROCEDIMIENTO
# iteraciones en longitud
xi = np.arange(a,b+dx,dx)
fi = fx(xi)
m = len(xi)
ultimox = m-1

# Resultados en tabla u[x,t]
u = np.zeros(shape=(m,n), dtype=float)

# valores iniciales de u[:,j]
j=0
ultimot = n-1
u[0,:]= Ta
u[1:ultimox,j] = fi[1:ultimox]
u[ultimox,:] = Tb

# factores P,Q,R
lamb = dt/(K*dx**2)
P = lamb
Q = 1 - 2*lamb
R = lamb

# Calcula U para cada tiempo + dt
j = 0
while not(j>=ultimot): # igual con lazo for
    for i in range(1,ultimox,1):
        u[i,j+1] = P*u[i-1,j] + Q*u[i,j] + R*u[i+1,j]
    j=j+1

# SALIDA
print('Tabla de resultados')
np.set_printoptions(precision=2)
print(u)

# Gráfica
salto = int(n/10)
if (salto == 0):
    salto = 1
for j in range(0,n,salto):
    vector = u[:,j]
    plt.plot(xi,vector)
    plt.plot(xi,vector, '.r')
    
plt.xlabel('x[i]')
plt.ylabel('t[j]')
plt.title('Solución EDP parabólica')
plt.show()

s2Eva_2022PAOII_T2 EDO – población de protestantes en una sociedad

Ejercicio: 2Eva_2022PAOII_T2 EDO – población de protestantes en una sociedad

\frac{\delta}{\delta t}x(t) = b x(t) - d (x(t))^2 \frac{\delta}{\delta t}y(t) = b y(t) - d (y(t))^2 +r b (x(t)-y(t))

literal a

simplificando la nomenclatura

x' = b x - d x^2 y' = b y - d y^2 +r b (x-y)

sustituyendo constantes, y considerando x(0)=1 ; y(0)=0.01 ; h=0.5

x' = 0.02 x - 0.015 x^2 y' = 0.02 y - 0.015 y^2 +0.1(0.02) (x-y)

el planteamiento de Runge Kutta se hace junto a la primera iteración, además de encontrarse en las instrucciones con Python.

literal b

Se describen 3 iteraciones usando los resultados de la tabla con el algoritmo, para mostrar la comprensión del algoritmo.

t = 0
K1x = 0.5 (0.02 (1) – 0.015 (1)2 = 0.0025
K1y = 0.5(0.02 (0.01) – 0.015 (0.01)2 +0.1(0.02) (1-0.01)= 0.001089

K2x = 0.5 (0.02 (1+0.0025) – 0.015 (1+0.0025)2= 0.00248
K2y = 0.5(0.02 (0.01+0.00108) – 0.015 (0.01+0.00108)2+0.1(0.02) ((1+0.0025)-(0.01+0.00108)) = 0.001101

x1 = 1 + (1/2)(0.0025+0.00248) = 1.0025
y1 = 0.01 + (1/2)(0.001089+0.001101) = 0.01109
t1 = 0 + 0.5 =0.5

t=0.5
K1x = 0.5 (0.02 (1.0025) – 0.015 (1.0025)2 = 0.002487
K1y = 0.5(0.02 (0.01109) – 0.015 (0.01109)2 +0.1(0.02) (1.0025-0.01109)= 0.001101

K2x = 0.5 (0.02 (1.0025+ 0.002487) – 0.015 (1.0025+ 0.002487)2= 0.002474
K2y = 0.5(0.02 (0.01109+0.001101) – 0.015 (0.01109+0.001101)2+0.1(0.02) ((1.0025+ 0.002487)-(0.01109+0.001101)) = 0.001113

x2 = 1.0025 + (1/2)(0.002487+0.002474) = 1.0050
y2 = 0.01109 + (1/2)(0.001101+0.001113) = 0.01220
t2 = 0.5 + 0.5 = 1

t=1
K1x = 0.5 (0.02 (1.0050) – 0.015 (1.0050)2 = 0.002474
K1y = 0.5(0.02 (0.01220) – 0.015 (0.01220)2 +0.1(0.02) (1.0050-0.01220)= 0.001113

K2x = 0.5 (0.02 (1.0050+ 0.002474) – 0.015 (1.0050+ 0.002474)2= 0.002462
K2y = 0.5(0.02 (0.01220+0.001113) – 0.015 (0.01220+0.001113)2+0.1(0.02) ((1.0050+ 0.002474)-(0.01220+0.001113)) = 0.001126

x3 = 1.0050 + (1/2)(0.002474+0.002462) = 1.0074
y3 = 0.01220 + (1/2)(0.001113+0.001126) = 0.01332
t3 = 1 + 0.5 = 1.5

Resultado con el algoritmo

Para obtener los datos de las iteraciones, primero se ejecuta el algoritmo para pocas iteraciones.
Para la pregunta sobre 200 años, se incrementa las iteraciones a 2 por año y las condiciones iniciales, es decir 401 muestras.

 [ ti, xi, yi]
 [ ti, xi, yi]
[[0.0000e+00 1.0000e+00 1.0000e-02 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]
 [5.0000e-01 1.0025e+00 1.1095e-02 2.5000e-03 1.0892e-03 2.4875e-03 1.1014e-03]
 [1.0000e+00 1.0050e+00 1.2203e-02 2.4875e-03 1.1014e-03 2.4749e-03 1.1136e-03]
 [1.5000e+00 1.0074e+00 1.3323e-02 2.4749e-03 1.1137e-03 2.4623e-03 1.1260e-03]
 [2.0000e+00 1.0099e+00 1.4455e-02 2.4624e-03 1.1260e-03 2.4497e-03 1.1384e-03]
 [2.5000e+00 1.0123e+00 1.5600e-02 2.4498e-03 1.1384e-03 2.4371e-03 1.1509e-03]
 [3.0000e+00 1.0148e+00 1.6757e-02 2.4371e-03 1.1509e-03 2.4245e-03 1.1634e-03]
 [3.5000e+00 1.0172e+00 1.7926e-02 2.4245e-03 1.1635e-03 2.4118e-03 1.1761e-03]
 [4.0000e+00 1.0196e+00 1.9109e-02 2.4118e-03 1.1761e-03 2.3991e-03 1.1888e-03]
...
 [1.9950e+02 1.3252e+00 1.1561e+00 ... 1.7202e-03 8.1217e-05 1.7059e-03]
 [2.0000e+02 1.3252e+00 1.1578e+00 ... 1.7060e-03 8.0418e-05 1.6918e-03]
 [2.0050e+02 1.3253e+00 1.1595e+00 ... 1.6919e-03 7.9628e-05 1.6778e-03]]
>>> 

Observación: La población identificada como protestante, continua creciendo, mientras que la proporción de «conformistas» se reduce según los parámetros indicados en el ejercicio. Los valores de natalidad y defunción cambian con el tiempo mucho más en años por otras variables, por lo que se deben realizar ajustes si se pretende extender el modelo.

2Eva2022PAOII_T2 poblacion protestantes
Instrucciones en Python

# Modelo predador-presa de Lotka-Volterra
# Sistemas EDO con Runge Kutta de 2do Orden
import numpy as np

def rungekutta2_fg(f,g,t0,x0,y0,h,muestras):
    tamano = muestras +1
    tabla = np.zeros(shape=(tamano,7),dtype=float)
    tabla[0] = [t0,x0,y0,0,0,0,0]
    ti = t0
    xi = x0
    yi = y0
    for i in range(1,tamano,1):
        K1x = h * f(ti,xi,yi)
        K1y = h * g(ti,xi,yi)
        
        K2x = h * f(ti+h, xi + K1x, yi+K1y)
        K2y = h * g(ti+h, xi + K1x, yi+K1y)

        xi = xi + (1/2)*(K1x+K2x)
        yi = yi + (1/2)*(K1y+K2y)
        ti = ti + h
        
        tabla[i] = [ti,xi,yi,K1x,K1y,K2x,K2y]
    tabla = np.array(tabla)
    return(tabla)

# PROGRAMA ------------------

# INGRESO
# Parámetros de las ecuaciones
b = 0.02
d = 0.015
r = 0.1

# Ecuaciones
f = lambda t,x,y : (b-d*x)*x
g = lambda t,x,y : (b-d*y)*y + r*b*(x-y)

# Condiciones iniciales
t0 = 0
x0 = 1
y0 = 0.01

# parámetros del algoritmo
h = 0.5
muestras = 401

# PROCEDIMIENTO
tabla = rungekutta2_fg(f,g,t0,x0,y0,h,muestras)
ti = tabla[:,0]
xi = tabla[:,1]
yi = tabla[:,2]

# SALIDA
np.set_printoptions(precision=6)
print(' [ ti, xi, yi, K1x, K1y, K2x, K2y]')
print(tabla)

# Grafica tiempos vs población
import matplotlib.pyplot as plt

plt.plot(ti,xi, label='xi poblacion')
plt.plot(ti,yi, label='yi protestante')

plt.title('población y protestantes')
plt.xlabel('t años')
plt.ylabel('población')
plt.legend()
plt.grid()
plt.show()

# gráfica xi vs yi
plt.plot(xi,yi)

plt.title('población y protestantes [xi,yi]')
plt.xlabel('x población')
plt.ylabel('y protestantes')
plt.grid()
plt.show()

s2Eva_2022PAOII_T1 Altura de cohete en 30 segundos

Ejercicio: 2Eva_2022PAOII_T1 Altura de cohete en 30 segundos

literal a

v = u \ln\Big(\frac{m_0}{m_0-qt}\Big) - gt v = 1800 \ln\Big(\frac{160000}{160000-2500t}\Big) - 9.8t

Seleccionando el método de Simpson de 3/8, se requieren al menos 3 tramos o segmentos para usarlo, que generan 4 muestras. El vector de tiempo se obtiene como:

v = lambda t: 1800*np.log(160000/(160000-2500*t))-9.8*t
a = 0
b = 30
tramos = 3
h = (b-a)/tramos
ti = np.linspace(a,b,tramos+1)
vi = v(ti)

siendo los vectores:

ti = [ 0. 10. 20. 30.]
vi = [ 0. 207.81826623 478.44820899 844.54060574]

la aplicación del método de Simpson de 3/8 es:

I = \frac{3}{8}(10) \Bigg(1800 \ln\Big(\frac{160000}{160000-2500(0)}\Big) - 9.8(0) +3(1800 \ln\Big(\frac{160000}{160000-2500(10)}\Big) - 9.8(10)) +3(1800 \ln\Big(\frac{160000}{160000-2500(20)}\Big) - 9.8(20)) +1800 \ln\Big(\frac{160000}{160000-2500(30)}\Big) - 9.8(30) \Bigg) = I = \frac{3}{8}(10) \Big(v(0)+3(v(10))+3(v(20))+v(30) \Big) I = \frac{3}{8}(10) \Big(0+3(207.81)+3(478.44)+844.54 \Big) I = 10887.52

literal b

para el primer segmento se usa t entre [0,10]

x_a = \frac{0+10}{2} + \frac{1}{\sqrt{3}}\frac{10-0}{2} = 7.88 x_b = \frac{0+10}{2} - \frac{1}{\sqrt{3}}\frac{10-0}{2} = 2.11 I = \frac{10-0}{2}\Big(v(7.88)+v(2.11)\Big)=995.79

para el 2do segmento se usa t entre [10,20]

x_a = \frac{10+20}{2} + \frac{1}{\sqrt{3}}\frac{20-10}{2} = 17.88 x_b = \frac{10+20}{2} - \frac{1}{\sqrt{3}}\frac{20-10}{2} = 12.11 I = \frac{20-10}{2}\Big(v(17.88)+v(12.11)\Big) =3368.42

para el 3er segmento se usa t entre [20,30]

x_a = \frac{20+30}{2} + \frac{1}{\sqrt{3}}\frac{30-20}{2} = 27.88 x_b = \frac{20+30}{2} - \frac{1}{\sqrt{3}}\frac{30-20}{2} = 22.11 I = \frac{30-20}{2}\Big(v(27.88)+v(22.11)\Big) = 6515.23 Altura = 995.79+ 3368.42 + 6515.23 = 10879.44

literal c

el error es la diferencia entre los métodos
error_entre = |10887.52-10879.44| = 8.079

Resultados con algoritmo

Método de Simpon 3/8
ti
[ 0. 10. 20. 30.]
vi
[ 0. 207.81826623 478.44820899 844.54060574]
Altura con Simpson 3/8 : 10887.52511781406
segmento Cuad_Gauss :    [995.792, 3368.421, 6515.231]
Altura Cuadratura Gauss: 10879.445437288954
diferencia s3/8 y Cuad_Gauss: 8.079680525106596
>>>

Instrucciones en Python

# 2Eva_2022PAOII_T1 Altura de cohete en 30 segundos
import numpy as np

# INGRESO
v = lambda t: 1800*np.log(160000/(160000-2500*t))-9.8*t
a = 0
b = 30
tramos = 3

# PROCEDIMIENTO literal a
def integrasimpson38_fi(xi,fi,tolera = 1e-10):
    ''' sobre muestras de fi para cada xi
        integral con método de Simpson 3/8
        respuesta es np.nan para tramos desiguales,
        no hay suficientes puntos.
    '''
    n = len(xi)
    i = 0
    suma = 0
    while not(i>=(n-3)):
        h  = xi[i+1]-xi[i]
        h1 = (xi[i+2]-xi[i+1])
        h2 = (xi[i+3]-xi[i+2])
        dh = abs(h-h1)+abs(h-h2)
        if dh<tolera:# tramos iguales
            unS38 = fi[i]+3*fi[i+1]+3*fi[i+2]+fi[i+3]
            unS38 = (3/8)*h*unS38
            suma = suma + unS38
        else:  # tramos desiguales
            suma = 'tramos desiguales'
        i = i + 3
    if (i+1)<n: # incompleto, tramos por calcular
        suma = 'tramos incompletos, faltan '
        suma = suma +str(n-(i+1))+' tramos'
    return(suma)

h = (b-a)/tramos
ti = np.linspace(a,b,tramos+1)
vi = v(ti)
altura = integrasimpson38_fi(ti,vi)

# SALIDA
print('Método de Simpon 3/8')
print('ti')
print(ti)
print('vi')
print(vi)
print('Altura con Simpson 3/8 :',altura)

# PROCEDIMIENTO literal b
# cuadratura de Gauss de dos puntos
def integraCuadGauss2p(funcionx,a,b):
    x0 = -1/np.sqrt(3)
    x1 = -x0
    xa = (b+a)/2 + (b-a)/2*(x0)
    xb = (b+a)/2 + (b-a)/2*(x1)
    area = ((b-a)/2)*(funcionx(xa) + funcionx(xb))
    return(area)

area = 0
area_i =[]
for i in range(0,tramos,1):
    deltaA = integraCuadGauss2p(v,ti[i],ti[i+1])
    area = area + deltaA
    area_i.append(deltaA)
# SALIDA
print('segmento Cuad_Gauss :   ', area_i)
print('Altura Cuadratura Gauss:', area)

print('diferencia s3/8 y Cuad_Gauss:',altura-area)

import matplotlib.pyplot as plt
plt.plot(ti,vi)
plt.plot(ti,vi,'o')
plt.title('v(t)')
plt.xlabel('t (s)')
plt.ylabel('v (m/s)')
plt.grid()
plt.show()

s2Eva_2022PAOI_T3 EDP parabólica barra enfriada en centro

Ejercicio: 2Eva_2022PAOI_T3 EDP parabólica barra enfriada en centro

Para la ecuación dada con Δx = 1/3, Δt = 0.02, en una revisíón rápida para cumplir la convergencia dt<dx/10, condición que debe verificarse con la expresión obtenida para λ al desarrollar el ejercicio.

\frac{\partial U}{\partial t} - \frac{1}{9} \frac{\partial ^2 U}{\partial x^2} = 0 0 \leq x \leq 2, t>0

literal a. grafica de malla

literal b. Ecuaciones de diferencias divididas a usar

\frac{\partial U}{\partial t} - \frac{1}{9} \frac{\partial ^2 U}{\partial x^2} = 0 \frac{\partial ^2 U}{\partial x^2} = 9 \frac{\partial U}{\partial t} \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^2} = 9 \frac{u_{i,j+1}-u_{i,j}}{\Delta t}

se agrupan las constantes,

\frac{\Delta t}{9(\Delta x)^2} \Big(u[i-1,j]-2u[i,j]+u[i+1,j] \Big) = u[i,j+1]-u[i,j]

literal d Determine el valor de λ

\lambda = \frac{\Delta t}{9(\Delta x)^2} =\frac{0.02}{9(1/3)^2} = 0.02

valor de λ que es menor que 1/2, por lo que el método converge.

continuando luego con la ecuación general,

\lambda \Big(u[i-1,j]-2u[i,j]+u[i+1,j] \Big) = u[i,j+1]-u[i,j] \lambda u[i-1,j]-2 \lambda u[i,j] + \lambda u[i+1,j] \Big) = u[i,j+1]-u[i,j]

literal c. Encuentre las ecuaciones considerando las condiciones dadas en el problema.

\lambda u[i-1,j]+(1-2 \lambda ) u[i,j] + \lambda u[i+1,j] = u[i,j+1]

el punto que no se conoce su valor es u[i,j+1] que es la ecuación buscada.

u[i,j+1] = \lambda u[i-1,j]+(1-2 \lambda ) u[i,j] + \lambda u[i+1,j]

literal e iteraciones

iteración  i=1, j=0

u[1,1] = \lambda u[0,0]+(1-2 \lambda ) u[1,0] + \lambda u[2,0] u[1,1] =0.02 \cos \Big( \frac{\pi}{2}(0-3)\Big) + (1-2(0.02) ) \cos \Big( \frac{\pi}{2}\big(\frac{1}{3}-3\big)\Big) + 0.02 \cos \Big( \frac{\pi}{2}\big( \frac{2}{3}-3\big) \Big) u[1,1] =0.02(0)+(0.96)(-0.5)+0.02(-0.8660)=-0.4973

iteración  i=2, j=0

u[2,1] = \lambda u[1,0]+(1-2 \lambda ) u[2,0] + \lambda u[3,0] u[2,1] = 0.02 \cos \Big( \frac{\pi}{2}(\frac{1}{3}-3)\Big) + (1-2(0.02) ) \cos \Big( \frac{\pi}{2}(\frac{2}{3}-3)\Big)+ + 0.02 \cos \Big( \frac{\pi}{2}\big(\frac{3}{3}-3\big)\Big) u[2,1] = 0.02 (-0.5) + (0.96 ) (-0.866025) + 0.02 (-1) =-0.8614

iteración  i=3, j=0

u[3,1] = \lambda u[2,0]+(1-2 \lambda ) u[3,0] + \lambda u[4,0] u[3,1] = 0.02 \cos \Big( \frac{\pi}{2}\big( \frac{2}{3}-3\big)\Big)+(1-2 (0.02) ) \cos \Big( \frac{\pi}{2}(1-3)\Big) + + 0.02 \cos \Big( \frac{\pi}{2}\big(\frac{4}{3}-3\big)\Big) u[3,1] = 0.02 (-0.866025)+(0.96 ) (-1) + 0.02 (-0,866025) = -0,9946

literal f

la cotas de errores de truncamiento en la ecuación corresponden a segunda derivada O(hx2) y el de primera derivada O(ht), al reemplazar los valores será la suma}

O(hx2) + O(ht) = (1/3)2 + 0.02 = 0,1311

literal g

Resultados usando el algoritmo en Python

Tabla de resultados
[[ 0.      0.      0.      0.      0.      0.      0.      0.      0.       0.    ]
 [-0.5    -0.4973 -0.4947 -0.492  -0.4894 -0.4867 -0.4841 -0.4815 -0.479   -0.4764]
 [-0.866  -0.8614 -0.8568 -0.8522 -0.8476 -0.8431 -0.8385 -0.8341 -0.8296  -0.8251]
 [-1.     -0.9946 -0.9893 -0.984  -0.9787 -0.9735 -0.9683 -0.9631 -0.9579  -0.9528]
 [-0.866  -0.8614 -0.8568 -0.8522 -0.8476 -0.8431 -0.8385 -0.8341 -0.8296  -0.8251]
 [-0.5    -0.4973 -0.4947 -0.492  -0.4894 -0.4867 -0.4841 -0.4815 -0.479   -0.4764]
 [ 0.      0.      0.      0.      0.      0.      0.      0.      0.       0.    ]]

Instrucciones en Python

# EDP parabólicas d2u/dx2  = K du/dt
# método explícito, usando diferencias finitas
# 2Eva_2022PAOI_T3 EDP parabólica barra enfriada en centro
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
# Valores de frontera
Ta = 0
Tb = 0
T0 = lambda x: np.cos((np.pi/2)*(x-3))
# longitud en x
a = 0.0
b = 2.0
# Constante K
K = 9
# Tamaño de paso
dx = 1/3
dt = 0.02
tramos = int(np.round((b-a)/dx,0))
muestras = tramos + 1
# iteraciones en tiempo
n = 10

# PROCEDIMIENTO
# iteraciones en longitud
xi = np.linspace(a,b,muestras)
m = len(xi)
ultimox = m-1

# Resultados en tabla u[x,t]
u = np.zeros(shape=(m,n), dtype=float)

# valores iniciales de u[:,j]
j=0
ultimot = n-1
u[0,j]= Ta
u[1:ultimox,j] = T0(xi[1:ultimox])
u[ultimox,j] = Tb

# factores P,Q,R
lamb = dt/(K*dx**2)
P = lamb
Q = 1 - 2*lamb
R = lamb

# Calcula U para cada tiempo + dt
j = 0
while not(j>=ultimot):
    u[0,j+1] = Ta
    for i in range(1,ultimox,1):
        u[i,j+1] = P*u[i-1,j] + Q*u[i,j] + R*u[i+1,j]
    u[m-1,j+1] = Tb
    j=j+1

# SALIDA
print('Tabla de resultados')
np.set_printoptions(precision=2)
print(u)

# Gráfica
salto = int(n/10)
if (salto == 0):
    salto = 1
for j in range(0,n,salto):
    vector = u[:,j]
    plt.plot(xi,vector)
    plt.plot(xi,vector, '.r')
plt.xlabel('x[i]')
plt.ylabel('t[j]')
plt.title('Solución EDP parabólica')
plt.show()

s2Eva_2022PAOI_T2 EDO de circuito RLC con interruptor intermedio

Ejercicio: 2Eva_2022PAOI_T2 EDO de circuito RLC con interruptor intermedio

La corriente del inductor y(t) para t≥0 se deriva para tener la expresión solo derivadas:

\frac{\delta}{\delta t}y(t) + 2 y(t) + 5 \int_{-\infty}^t y(\tau) \delta \tau = 10 \mu(t)

Para t>0 que es donde transcurre el experimento, el escalón es una constante, se tiene que:

\frac{\delta ^2}{\delta t^2}y(t) + 2 \frac{\delta}{\delta t}y(t) + 5 y(t) = 0

tomando las condiciones iniciales dadas para t=0, y(0)=2, y'(0)=–4

literal a

EL resultadoes perado es el planteamiento del problema. Se reescribe la ecuación con la nomenclatura simplificada y se resordena segun el modelo del método:

y'' = - 2y' - 5 y

luego se sustituye la variable y se convierte a las ecuaciones:

z =y' = f_x(t,y,z) z' = - 2z - 5 y = g_z(t,y,z)

se usa una tabla para llevar el registro de operaciones:

Se plantea las operaciones:

K1y = h * f(ti,yi,zi)
K1z = h * g(ti,yi,zi)

K2y = h * f(ti+h, yi + K1y, zi + K1z)
K2z = h * g(ti+h, yi + K1y, zi + K1z)

yi = yi + (K1y+K2y)/2
zi = zi + (K1z+K2z)/2
ti = ti + h

literal b

El resultado esperado es la aplicación correcta de los valores en las expresiones para al menos tres iteraciones usando h=0.01

itera = 0

K1y = 0.01 y'(0) = 0.01(-4) = -0.04 K1z = 0.01 (- 2z(0) - 5 y(0)) = 0.01(- 2(-4) - 5 (2)) = -0.02 K2y = 0.01 (-4-0.02) = -0.0402 K2z = 0.01 (-2(-4-0.02)-5(2-0.04)) = -0.0176 yi = yi + \frac{K1y+K2y}{2} = 2+\frac{-0.04-0.0402} {2} = 1.9599 zi = zi + \frac{K1z+K2z}{2} = -4 +\frac{-0.02-0.0176}{2} = -4.0188 ti = ti + h = 0+0.01 = 0.01

itera = 1

K1y = 0.01(-4.0188) = -0.040188 K1z = 0.01(- 2(-4.0188) - 5 (1.9599)) = -0.0176 K2y = 0.01 (-4.0188-0.0176) = -0.0403 K2z = 0.01 (-2(-4.0188-0.0176)-5(1.9599-0.040188)) = -0.0152 yi = 1.9599 +\frac{-0.040188-0.0403} {2} = 1.9196 zi = -4.0188 +\frac{-0.0176-0.0152}{2} = -4.0352 ti = ti + h = 0.01+0.01 = 0.02

itera = 2

K1y = 0.01(-4.0352) = -0.040352 K1z = 0.01(- 2(-4.0352) - 5 (1.9196)) = -0.0152 K2y = 0.01 (-4.0352-0.0152) = -0.0405 K2z = 0.01 (-2(-4.0352-0.0152)-5(1.9196-0.040352)) = -0.0129 yi = 1.9196 +\frac{-0.040352-0.0405} {2} =1.8792 zi = -4.0352 +\frac{-0.0152-0.0129}{2} = -4.0494 ti = ti + h = 0.02+0.01 = 0.03

Resultados con el algoritmo en Python

   ti,   yi,    zi,      K1y,    K1z,    K2y,     K2z
[[ 0.00  2.0000 -4.0000  0.0000  0.0000  0.0000   0.0000]
 [ 0.01  1.9599 -4.0188 -0.0400 -0.0200 -0.0402  -0.0176]
 [ 0.02  1.9196 -4.0352 -0.0401 -0.0176 -0.0403  -0.0152]
 [ 0.03  1.8792 -4.0494 -0.0403 -0.0152 -0.0405  -0.0129]
...

Literal c

Runge-Kutta 2do Orden tiene error de truncamiento O(h3)

por lo que el error está en el orden de (0.01)3 = 0.000001


Literal d

Se requiere presentar el resultado para el intervalo t entre [0,5]. Siendo el tamaño de paso h=0.01 que es pequeño, se requieren realizar (5-0)/0.01=500 iteraciones, que es más práctico realizarlas usando el algoritmo.

Instrucciones en Python

# Respuesta a entrada cero
# solucion para (D^2+ D + 1)y = 0
import numpy as np
import matplotlib.pyplot as plt

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras):
    tamano = muestras + 1
    estimado = np.zeros(shape=(tamano,7),dtype=float)
    # incluye el punto [x0,y0]
    estimado[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        estimado[i] = [xi,yi,zi,K1y,K1z,K2y,K2z]
    return(estimado)

# PROGRAMA
f = lambda t,y,z: z
g = lambda t,y,z: -2*z -5*y + 0

t0 = 0
y0 = 2
z0 = -4

h = 0.01
tn = 5
muestras = int((tn-t0)/h)

tabla = rungekutta2_fg(f,g,t0,y0,z0,h,muestras)
ti = tabla[:,0]
yi = tabla[:,1]
zi = tabla[:,2]

# SALIDA
np.set_printoptions(precision=4)
print('ti, yi, zi, K1y, K1z, K2y, K2z')
print(tabla)

# GRAFICA
plt.plot(ti,yi, color = 'orange', label='y_RK(t)')
plt.ylabel('y(t)')
plt.xlabel('t')
plt.title('y(t) con Runge-Kutta 2do Orden d2y/dx2 ')
plt.legend()
plt.grid()
plt.show()

Nota: En el curso TELG1001 Señales y Sistemas, la solución se realiza con Transformadas de Laplace